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Abstract

Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fully-occluded from its

camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or

they require the item to be tagged with a radio frequency identification tag (e.g., RFID), making their approach beneficial only

to tagged items in the environment. We present FuseBot, the first robotic system for RF-Visual mechanical search that enables

efficient retrieval of both RF-tagged and untagged items in a pile. Rather than requiring all target items in a pile to be RF-tagged,

FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design

introduces two key innovations. The first is RF-Visual Mapping, a technique that identifies and locates RF-tagged items in a pile

and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy

formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting

for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions.

We built a real-time end-to-end prototype of our system on a UR5e robotic arm with in-hand vision and RF perception modules.

We conducted over 200 real-world experimental trials to evaluate FuseBot and compare its performance to a state-of-the-art

vision-based system named X-Ray (Danielczuk et al., in: 2020 IEEE/RSJ international conference on intelligent robots and

systems (IROS), IEEE, 2020). Our experimental results demonstrate that FuseBot outperforms X-Ray’s efficiency by more

than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray’s

success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time

that the benefits of RF perception extend beyond tagged objects in the mechanical search problem.

Keywords Mechanical search · RF-visual perception · RF-visual fusion · RFID · Robotic grasping

1 Introduction

There has been increasing interest in robotic systems that

can find and retrieve occluded items in unstructured envi-

ronments such as warehouses, retail stores, homes, and

manufacturing (Danielczuk et al., 2019, 2020; Boroushaki

et al., 2021a, b; Huang et al., 2020). For example, in
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e-commerce warehouses, there is a need for robots that can

package customer orders from unsorted inventory or process

returns from a miscellaneous pile. Similarly, in manufactur-

ing plants, robots need to find and retrieve specific tools from

the environment (e.g., a wrench) that they need for assem-

bly tasks. In many of these scenarios, the target item may be

partially or fully occluded from the robot’s camera, requiring

the robot to actively explore the entire environment to find

and retrieve the desired item.

Existing robotic systems that aim to address this mechan-

ical search problem broadly fall in two main categories. The

first relies entirely on vision-based perception (Danielczuk

et al., 2019, 2020; Huang et al., 2020). In these systems,

the robot typically performs active perception by moving its

camera around a pile to identify the target item through par-

tial occlusions, and/or it performs manipulation to declutter

the scene by removing occluding items until it can observe
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Fig. 1 RF-visual mechanical search. FuseBot uses RF and visual sensor

data (from wrist-mounted camera and antenna) to perform mechanical

search and extract the occluded target items from the piles of both RFID

tagged and non-tagged items

the target. While this category of systems can perform well

on relatively small piles, they become inefficient in complex

scenarios with larger or multiple piles. The second category

of systems leverages radio frequency (RF) perception in addi-

tion to vision-based perception (Boroushaki et al., 2021a, b;

Wang et al., 2013). Unlike visible light and infrared, RF sig-

nals can go through standard materials like cardboard, wood,

and plastic. Thus, recent systems have leveraged RF signals

to locate fully occluded objects tagged with widely-deployed,

passive, 3-cent RF stickers (called RFIDs). By identifying

and locating the RFID-tagged target items through occlu-

sions, these systems can make the mechanical search process

much more efficient. However, the benefits of existing sys-

tems in this category are restricted to scenarios where all

target items are tagged, thus providing limited benefit in more

common scenarios where only a subset of items are tagged

with RFIDs.

In this paper, we ask the following question: Can we

design a robotic system that performs efficient RF-Visual

mechanical search for both RF-tagged and non-tagged tar-

get objects? Specifically, rather than requiring all items to be

RF-tagged, we consider more realistic and practical scenar-

ios where only a subset of items are tagged, and ask whether

one can improve the efficiency of retrieving non-tagged tar-

get items by leveraging RF perception. A positive answer

to this question would extend the benefits of RF perception

to new application scenarios, such as those where the target

item cannot be tagged with inexpensive RFIDs (e.g., metal

tools and liquid bottles)1 and instances when the robot is

presented with piles of items that are not fully tagged.

We present FuseBot, a robotic system that can efficiently

find and extract tagged and non-tagged items in line-of-sight,

non-line-of-sight, and fully occluded settings. Similar to past

work that leverages RF perception, FuseBot uses RF sig-

nals to identify and locate RFID tags in the environment

with centimeter-scale precision. Unlike the past systems, it

can efficiently extract both non-tagged and tagged items that

are fully occluded. As shown in Fig. 1, FuseBot integrates a

camera and an antenna into its robotic arm and leverages the

robot movements to locate RFIDs, model unknown/occluded

regions in the environment, and efficiently extract target

items from under a pile independent of whether or not they

are tagged with RFIDs.

The key intuition underlying FuseBot’s operation is that

knowing where an RFID-tagged item is within a pile provides

useful information about the pile’s occupancy distribution

and allows the robot to significantly narrow down the can-

didate locations of non-tagged items. In its simplest form,

knowledge of where an RFID-tagged item is within a pile

negates the possibility of another item occupying the same

location. Since the in-hand antenna allows the robot to local-

ize all RFID tags in a pile, the robot can leverage this

knowledge to narrow down the likely locations of a non-

tagged target item, and thus plan efficient retrieval policies

for these items.

Translating this high-level idea into a practical system is

challenging. While the in-hand antenna can locate each RFID

as a single point in 3D space, it cannot recover the 3D vol-

umetric occupancy map of the object an RFID is attached

to. Since an RFID is attached to the object’s surface and not

at its center, there is uncertainty about both the position and

orientation of the tagged item. The problem is further com-

plicated by the fact that retrieving an occluded item involves

manipulating the environment (e.g., by removing occluding

objects to uncover the target). Here, uncertainty about the tar-

get object’s location makes it difficult to identify the optimal

manipulation actions to most efficiently reveal and extract

the target.

FuseBot introduces two key components that together

allow it to overcome the above challenges:

(a) RF-Visual Mapping FuseBot’s first component con-

structs a probabilistic occupancy map of the target item’s

location in the pile by fusing information from the robot’s

in-hand camera and RF antenna as shown in Fig. 2a. This

component localizes the RFIDs in the pile and applies a con-

ditional (shape-aware) RF kernel to construct a negative 3D

probability mask, as shown in the red regions of Fig. 2b.

1 It is worth noting certain RFIDs can work on metal and liquids, but are

much more expensive than the 3-cent passive RFIDs, making prohibitive

for widespread adoption.
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Fig. 2 RF-visual mapping and RF-visual extraction. a As FuseBot

moves, it observes the environment using the wrist mounted camera

and RF module. b Using the RF measurements, FuseBot localizes the

RFID tagged items in the environment and computes RF kernels. c

Using the wrist mounted camera, FuseBot observes the environment. d

FuseBot fuses the vision observations and the RF kernels to create a 3D

occupancy distribution map which is visualized as a heat map. e Fuse-

Bot performs instance segmentation of the objects in the environment

using the depth information from the camera. f FuseBot optimized its

extraction strategy by integrating the 3D occupancy distribution over

each of the object segments and efficiently retrieves the target

By combining this information with its visual observation

of the 3D pile geometry (shown Fig. 2c), as well as prior

knowledge of the target object’s geometry, FuseBot creates

a 3D occupancy distribution, shown as a heatmap in Fig. 2d,

where red indicates high probability and blue indicates low

probability for the target item’s location. In this example, it is

worth noting how the probability of the occluded target item

is lower near the locations of RFID-tagged objects. Section 4

describes this component in detail, and how it also leverages

the geometry of the tagged items and the pile.

(b) RF-Visual Extraction Policy After computing the 3D

occupancy distribution, FuseBot needs an efficient extraction

policy to retrieve the target item. Extraction is a multi-step

process that involves removing occluding items and itera-

tively updating the occupancy distribution map. To optimize

this process, we formulate extraction as a minimization prob-

lem over the expected number of actions that takes into

account the expected information gain, the expected grasp

success, and the probability distribution map. To efficiently

solve this problem, FuseBot performs depth-based instance

segmentation, as shown in Fig. 2e. The segmentation allows

it to integrate the 3D occupancy distribution over each of the

object segments, and identify the optimal next-best-grasp, as

we describe in detail in Sect. 5.

We implemented a real-time end-to-end prototype of

FuseBot with a Universal Robot UR5e (Universal Robots,

2021) and Robotiq 2f-85 gripper (Robotiq, 2019). As shown

in Fig. 1, we mount an Intel RealSense Depth camera D415

(Intel RealSense, 2019) and log-periodic antennas on the

wrist of the robotic arm. Our implementation localizes the

RFIDs by processing measurement obtained from the log-

periodic antennas using BladeRF software radios (Nuand,

2021).

We ran over 200 real-world experimental trials to evaluate

FuseBot. We compared our system to a state-of-the-art sys-

tem called X-Ray (Danielczuk et al., 2020), which computes

a 2D occupancy distribution based on an RGB-D image. Our

evaluation demonstrates the following:

• FuseBot can efficiently retrieve complex, non-tagged

items in line-of-sight and fully occluded settings, across

different target objects and number of RFID tags. It suc-

ceeds in 95% of trials across a variety of scenarios, while

X-Ray was able to extract the target item in 84% of the

scenarios.

• In scenarios where FuseBot and X-Ray succeed in

mechanical search, FuseBot improves the efficiency of

extraction by more than 40%. Specifically, it reduces the

number of actions needed for successful retrieval from 5

to 3 actions in the median, and from 11 to 6 in the 90th

percentile.

• Our results also demonstrate that the efficiency gains

from FuseBot’s RF-Visual mechanical search increase

with the number of tagged items in the environment,

reaching as much as 2.5× improvement over X-Ray in

environments where 25% of (non-target) items are RF-

tagged and 4× improvement when the target item is

tagged.
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Contributions FuseBot is the first system that enables

mechanical search and extraction of both non-tagged and

tagged RFID items in non-line-of-sight and fully-occluded

settings. The system introduces two new primitives, RF-

Visual Mapping and RF-Visual Extraction, to enable RF-

Visual scene understanding and efficient retrieval of target

items. The paper also contributes a real-time end-to-end pro-

totype implementation of FuseBot, and an evaluation that

demonstrates the system’s practicality, efficiency, and suc-

cess rate in challenging real-world environments.

2 Related work

Interest in the problem of mechanical search dates back to

research that recognizes objects through or around partial

occlusions via active and interactive perception. Researchers

explored the use of perceptual completion to identify partially

occluded objects (Huang et al., 2012; Price et al., 2019), and

developed systems that perform active perception whereby

a robot moves a camera around the environment in order

to search for items that are partially visible (Aydemir et

al., 2011; Bajcsy, 1988; Bohg et al., 2017). Other areas of

research focused on efficiently grasping partially occluded

objects using physics-based planners (Dogar et al., 2012).

While these works made significant progress on the task of

finding and retrieving partially occluded objects, they do not

extend to mechanical search scenarios where the target object

is fully occluded.

Over the past few years, there has been rising interest in

the mechanical search problem for fully occluded objects,

whereby the robot actively manipulates the environment to

uncover target objects. The majority of systems for mechan-

ical search rely entirely on vision, and employ heuristics or

knowledge of the pile structure in order to inform the search

process. For example, recognizing that mechanical search

is a multi-step retrieval process, pioneering research in this

space used a heuristic-based approach to remove larger items

in the environment to uncover the largest area and maximize

information gain at each step (Danielczuk et al., 2019). More

recent work has started looking at the structure of the pile and

constrains the potential target item locations by leveraging

the geometry of both the pile and the target object (Daniel-

czuk et al., 2020). Other work has also looked at lateral

search, where objects are retrieved from the side rather than

from a pile (Huang et al., 2020; Avigal et al., 2021). One of

the main challenges of this vision-based approach to mechan-

ical search is that as piles become larger and more complex,

the uncertainty grows and the systems become more inef-

ficient. FuseBot builds on this type of research to perform

efficient mechanical search of fully-occluded objects, and

outperforms state-of-the-art past vision-based systems (as we

demonstrate empirically in Sect. 7) especially in the presence

of any RFID tagged item.

Most recently, researchers have explored the use of

RF perception to address the mechanical search problem

(Boroushaki et al., 2021a, b; Wang et al., 2013). This research

was motivated by recent advances in RF localization, which

has enabled locating cheap, passive, widely-deployed RF-

tags (called RFIDs tags) with centimeter scale accuracy, even

through occlusions (Ma et al., 2017; Wang & Katabi, 2013;

Luo et al., 2019). Thus, by tagging the target object with an

RFID, researchers have demonstrated the potential to per-

form efficient mechanical search by directly locating the

target RFID-tagged item in a pile, bypassing the exhaustive

search altogether. However, these past systems require the

target item to be tagged with an RFID to enable efficient

mechanical search and retrieval. Our work is motivated by

this line of work, and is the first to bring the benefits of RF

perception to non-tagged target items, leveraging the mere

existence of RFID tagged items in the pile.

3 System overview

We consider a general mechanical search problem where a

robot is tasked with retrieving a target item from a pile. The

target item may be unoccluded, partially occluded, or fully

occluded from the robot’s camera.

We focus on scenarios where one or more items in the pile

are tagged with UHF RFID (Radio Frequency IDentification)

tags, but where the target item does not need to be tagged

with an RFID. We assume that the robot knows the shape

of the tagged item, and has a database with the shapes of

all RFID-tagged items. Such a database may be provided by

the item’s manufacturer. The robot is a 6-DOF manipulator

with a camera and an antenna mounted on its wrist, and we

assume that the target item is kinematically reachable from

the robotic arm on a fixed base.

FuseBot’s objective is to extract the target(s) from the

environment using the smallest number of actions. It starts

by using its wrist-mounted antenna to wirelessly identify and

locate all RFIDs in the pile, even if they are in non-line-of-

sight. Using the RFID locations and its visual observation of

the pile geometry, it performs RF-Visual mechanical search

in two key steps. The first is RF-Visual Pile Mapping, where

FuseBot creates a 3D probability distribution of the target

object’s location within the pile. The second is RF-Visual

Extraction, where the robot uses the probability distribution

and its scene understanding to perform the next-best grasp.

The next two sections describe these steps in detail.
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Fig. 3 RF-visual mapping. FuseBot a constructs an initial map of

unknown regions using visual RGB-D information and b uses RFID

tag locations to construct RF kernels. c It then combines the RF and

Visual information to more accurately map probable target locations. d

Finally, it uses the target object geometry to further refine the probable

target locations

4 RF-visual pile mapping

In this section, we explain how FuseBot creates a 3D occu-

pancy distribution of a target item’s location in a pile. The

process of RF-Visual mapping consists of four key steps

where the robot first constructs separate RF and visual maps,

then fuses them together, and finally folds in information

about the target object’s geometry. For clarity of exposition,

we focus our discussion on scenarios where the target item is

both occluded and non-tagged, and discuss at the end of the

section how this technique generalizes to unoccluded and/or

non-tagged items.

4.1 Visual uncertainty map

The first step of RF-Visual pile mapping involves construct-

ing a 3D visual uncertainty map of the environment. This map

is important to identify all candidate locations of an occluded

object. To create the visual uncertainty map, the robot moves

its downward pointing wrist-mounted camera above the pile

to cover the workspace. It follows a simple square-based tra-

jectory in a plane parallel to the table with a pile, similar to

past work that constructs point clouds of piles (Boroushaki

et al., 2021b).

FuseBot combines the visual information obtained dur-

ing its trajectory using an Octomap structure (Hornung et

al., 2013). The structure represents the 3D workspace as a

voxel grid.2 Using depth information and the position of the

camera, FuseBot can determine whether each voxel in the

environment is visible to the camera (the surface of the pile

and table), or free space (the air), or occluded (e.g., under the

pile or table). Formally, it creates a 3D uncertainty matrix

2 In our implementation, each voxel is a 2.5×2.5×2.5cm cubic volume.

C(x, y, z) as follows:

C(x, y, z) =
{

1 unobserved voxel

0 observed voxel

Here, the higher value (i.e., 1) represents more uncertainty. It

is worth noting that, in this representation, both unexplored

and occluded regions are considered uncertain.

As an example, consider the sample scenario shown in

Fig. 1. This scenario consists of two piles with three RFID-

tagged items, and where the target item is a toy (stuffed red

turtle shown in the top center) hidden under the pile. The

visual uncertainty map is depicted as a heatmap in Fig. 3a.

Here, we can see that the regions under the surface of the

piles have a high probability (red) of containing the target

object.

4.2 RF localization

So far, we have explained how FuseBot constructs a 3D

uncertainty map based on the camera’s depth information.

Next, we explain how it accurately localizes RFIDs to gain

more information about the environment. For simplicity, we

first describe the localization of a single tag, then describe

how we support multiple tags. Our localization system fol-

lows three steps:

Step (1) Measuring RFID response First, recall that Fuse-

Bot has a wrist-mounted antenna which it uses to perform RF

perception. The antenna is used to read and localize RFID

tags in the pile. When the antenna transmits radio frequency

signals, passive RFID tags harvest energy from this signal to

power up and respond with their own identifier. FuseBot then

uses these responses to estimate the channel, which contains

123



1142 Autonomous Robots (2023) 47:1137–1154

Fig. 4 RF localization. FuseBot sends and receives RF signals (red

arrows) to and from the battery-free RFID tag (in yellow) at different

vantage points in order to localize the RFID tags in the environment

information about the distance to the tag. We refer readers to

Tse and Viswanath (2005) for more details on RF channels.

Formally, if an RFID transmits a signal x(t), and the

received signal is y(t), one can estimate the wireless channel

ĥ( fi ) as:

ĥ( fi ) =
∑

t

y(t)x∗(t)

The above describes the channel estimation at a single

frequency fi . FuseBot repeats this process at multiple fre-

quencies to obtain {ĥ( fi )}i

Step (2) Leveraging robot mobility for localization Since

channel measurements from a single location are not enough

to localize an RFID tag in 3D space, FuseBot leverages

robotic mobility to collect measurements from different van-

tage points and combines them to localize the tag. Since

FuseBot already requires a scan of the environment to build

the Visual Uncertainty map in Sect. 4.1, we leverage this

motion and continuously collect RFID channel measure-

ments as the robot moves, allowing us to collect a set of

measurements:

{ĥ( fi , pak
)}i,k

where pak
is the location of the antenna. Figure 4 schemat-

ically shows the robot moving and collecting RF measure-

ments in order to localize an RFID tag that is hidden under

a pile. The red dotted lines demonstrate the RF signals that

are transmitted from the wrist mounted antenna to the RFID

tag and then received by the wrist mounted antenna. Remem-

ber that unlike visible light, RF signals can traverse through

occlusions, and, as a result, the RF channel can be estimated

even when the RFID tag is under the pile.

Step (3) Combining measurements Finally, given these

measurements, the robot can combine them using a technique

called Synthetic Aperture Radar (Curlander & McDonough,

1991). This localization method combines measurements

across space and frequency (i.e., {ĥ( fi , pak
)}i,k) to estimate

the probability of the tag being at each point in 3D space.

This can be done using the following equation (Curlander &

McDonough, 1991):

P(p) =
∑

i

∑

k

ĥ( fi , pak
)e j2πd(p,pak

) fi /c (1)

where P(p) is the estimated probability at point p, pak
is

the antennas position at the time of the i th measurement, and

d(p, pak
) is the round-trip distance from point p to point pak

.

The final tag location is then estimated to be the location in

space with the highest probability:

pRF I D = argmax(P(p)) (2)

where pRF I D is the estimated location of the tag.

To extend this to any number of RFIDs, we modify step

2 as follows. Instead of continuously reading one RFID, we

estimate the channels of all RFID tags in the environment

sequentially as the robot is moving.3 This allows us to collect

a set of measurements for each RFID. We then recompute

Eqs. 1 and 2 for each RFID in the environment.

Finally, it is worth noting that wireless noise may lead

to localization errors. FuseBot’s design incorporates a confi-

dence metric (described below) to identify and mitigate such

errors. Specifically, if the confidence metric is low, the system

can choose either to ignore the corresponding tag altogether

or to take more RF measurements that enable it to increase

its localization confidence.

To understand whether we have confidently localized an

RFID, we leverage information from the probability com-

puted in Eq. 1. For simplicity of exposition, we demonstrate

this idea in Fig. 5, which shows a two-dimensional heatmap

of the probability, where yellow indicates a higher likelihood

of the RFID being located in that location and blue indicates

a lower likelihood. We consider two cases. In Fig. 5a), the

heatmap shows a small area of high probability surrounding

the tag’s location (denoted by a green x), which indicates a

high level of confidence in the RFID location. On the other

hand, Fig. 5b) shows a case where there is a large area of

yellow, so FuseBot has a low confidence in the location of

the RFID.

To quantify this phenomenon, FuseBot computes the

bounding box around the area of the heatmap that is within

0.75dB (∼84%) of the peak value (shown by δx and δy in

Fig. 5). When these dimensions have fallen below a threshold,

3 RFID readers can read 1000 s of tags per second. Moreover, the

readers support a medium-access protocol as part of the EPC Gen 2 pro-

tocol (http://www.gs1.org/epcrfid/epc-rfid-uhf-air-interface-protocol/

2-0-1) that easily allows FuseBot to select specific RFIDs if need be.
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Fig. 5 Confident RFID

localization. FuseBot uses the

heatmap of the probability (high

probability in yellow, low

probability in blue) to determine

its confidence in an RFID

location. a A highly confident

localization, with a small area of

yellow surrounding the RFID

tag (green x). b A low

confidence location, with a large

area of yellow (Color figure

online)

FuseBot declares the RFID confidently localized. Formally,

FuseBot’s criteria for declaring a successful RFID localiza-

tion is:

δx < τx & δy < τy & δz < τz

where δx , δy , and δz are the x, y, and z dimensions of the

bounding box around the area of the power where P(p) >

0.84 max[P(p)]. τx , τy , and τz are the thresholds in the x, y,

and z dimenions, respectively.

4.3 RF certainty map

Next, we explain how FuseBot leverages the estimated RFID

locations from the above section to construct a certainty map

based on RF measurements.

FuseBot uses the RFID tag locations to identify regions in

the pile that the target item is less likely to occupy, since they

are occupied by the RFID-tagged items (rather than the non-

tagged target item). A key challenge here is that the system

can only recover the RFID tag’s location as a single point

in 3D space. Since an RFID is attached to the surface of the

tagged item, there remains nontrivial uncertainty about the

orientation and exact position of the item in the pile (as it

may occupy a non-trivial region in the near vicinity of the

localized tag).

RF Kernel FuseBot encodes the uncertainty about the RFID-

tagged object’s location by constructing a 3D RF kernel that

leverages the known dimensions of the tagged object. The RF

kernel is modeled as a 3D Gaussian, centered at the RFID

tag, and masked with a sphere whose radius is equal to the

longest dimension of the tagged item. The spherical mask

represents an upper bound on the furthest distance from the

tag that the object can occupy. Formally, we represent its RF

kernel through the following equation:

m(p, pRF I D) =

⎧

⎨

⎩

− e‖p−pRF I D‖2/ds√
πds

‖p − pRF I D‖2 ≤ dl

0 ‖p − pRF I D‖2 > dl

where p is the point where we are evaluating the kernel,

pRF I D is the location of the RFID, ds and dl are the shortest

and longest distance of the RFID tagged object’s bounding

box respectively, and ‖·‖2 represents the L2 norm. Here, it

is worth noting that the negative sign represents the negative

likelihood for the target item to occupy the corresponding

region.

In the presence of multiple RFID tagged items, the RF

certainty map is a linear combination of all RF kernels

R(x, y, z) = −
N

∑

i=0

m(p, pi )

where N is the number of RFID tagged items in the environ-

ment. pi is the ith RFID location, and m(p, pi ) is the ith RF

kernel.

The RF certainty distribution for the example scenario

(described in Fig. 1) is shown in Fig. 3b. Since there are three

RFID-tagged items in the pile, the figure shows three spher-

ical regions that represent the Gaussians centered at each of

the localized RFIDs.

RF-Visual Uncertainty Map: Given both the visual uncer-

tainty map and the RF certainty map, FuseBot constructs an

RF-Visual uncertainty map by adding the two maps pixel-

wise (i.e., C + R). In the above example with two piles

and three RFID-tagged items, Fig. 3c shows the resulting

RF-Visual uncertainty map. Notice how by applying the RF

masks as a negative mask to the voxel grid values, FuseBot

folded the certainty gained from RF into the uncertainty from

the visual information.

4.4 RF-visual occupancy distributionmap

So far, we have described how FuseBot constructs a 3D prob-

ability distribution of possible locations of the target item by

fusing RF and visual information. Next, we describe how

FuseBot also leverages the target item’s size and shape to

further improve the occupancy distribution map. Intuitively,

the target’s size constrains the potential regions it can occupy

in the occluded region since, for example, larger targets can-

not fit into narrow regions of the pile.

To fold the target size into the distribution, FuseBot

employs a similar approach to the RF kernel described in
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Sect. 4.3. Specifically, it creates a target occupancy kernel

that summarizes all the possible orientations of a target object

using the following target gaussian kernel:

k(p) =

⎧

⎨

⎩

e‖p‖2/(2d2
s )

ds

√
2π

‖p‖2 ≤ dl

2

0 ‖p‖2 >
dl

2

(3)

where p is the point where we are evaluating the kernel, ds

and dl are the shortest and longest distance of the target object

bounding box respectively, and ‖·‖2 represents the L2 norm.4

To combine the geometric data from this target gaussian

kernel with the previously computed RF-Visual uncertainty

map, FuseBot performs a 3D convolution of the RF-Visual

uncertainty map and the target’s gaussian kernel. Intuitively,

after convolution, the regions that can fit the item of interest

in more possible orientations will have voxels with higher

weights than other regions of the unknown environment.

Hence, the resulting 3D occupancy distribution now encodes

the visual uncertainty, RFID tagged items, and the shape and

size of the target item.

Figure 3d shows the resulting RF-Visual occupancy dis-

tribution from this convolution operation (for the scenario

described earlier in Fig. 1). Notice that in this distribution,

regions near the RFID tags, as well as those near the edge

of the pile, have lower probabilities (blue/white) than other

regions in the pile.

4.5 Generalizing to other scenarios

Our discussion so far has focused on the case of a fully-

occluded non-tagged target item. The method can be gener-

alized to other scenarios in a number of ways:

4.5.1 Tagged target object

In scenarios where the target object is tagged with an RFID

tag and is not in the line of sight, FuseBot uses the calculated

RF kernel in order to build the occupancy distribution of

the RFID tagged target object. The RF kernel in this case

is positive and the visual uncertainty is ignored. FuseBot in

this case knows where the target object is and declutters the

environments efficiently to extract the target object.

4.5.2 Unoccluded target object

In cases where the target object is unoccluded (or partially

occluded), FuseBot can leverage prior approaches for identi-

fication and grasping to retrieve the target item from the pile

4 One interesting difference between the RF kernel and the target kernel

is that the RF kernel is larger since the RFID tag is on the surface of the

object, while the target item kernel is defined from the object’s center

(dl for the RF kernel vs dl/2 for the target kernel).

(Chen et al., 2020; Danielczuk et al., 2019; Krizhevsky et al.,

2012; Liu & Deng, 2015).

4.5.3 Deformable RFID tagged objects

In principle, FuseBot’s probabilistic approach described so

far allows it to operate with deformable objects. However, to

further improve the efficiency for such objects, we designed

a more advanced model. Recall that from the recorded data in

the RFID dataset, FuseBot knows if an RFID tagged object is

deformable or rigid. Specifically, when a deformable RFID

tagged object is present under a pile, it is likely to compress,

changing the object’s dimensions. This compression causes

the object to deviate from the model of the existing RF kernel.

FuseBot can leverage this observation to update the RF kernel

for such deformable objects. Specifically, instead of using a

spherical RF kernel as mentioned in Sect. 4.3, which is more

representative of rigid objects whose dimensions are fixed,

we introduce a Deformable RF Kernel.

We demonstrate this concept in Fig. 6. Figure 6a shows

the RFID tagged object before it was deformed. Figure 6b

shows the same RFID tagged object under a pile, deformed

due to the weight of the rest of the pile. Figure 6c shows

the original spherical RF kernel with variance σ = ds/2 (as

described in 4.3), with blue indicating more negative and red

indicating more positive probability. This RF kernel is over-

layed with the compressed deformable object that the kernel

is attempting to model. In this case, the model poorly aligns

with the object. Instead, Fig. 6d shows the new deformable

RF kernel. The variances of the Gaussian are updated to cre-

ate an elliptical kernel, better matching the expected shape

of the object.

Formally, we first define a deformation factor for the

RFID tagged object, α(ρ, z) ∈ [0, 1], which estimates how

deformed the object is. Here, α(ρ, z) = 0 represents a fully

deformed object and α(ρ, z) = 1 represents a non-deformed

object:

α(ρ, z) =
{

1 ρ = 1

z/zmax ρ = 0

where ρ ∈ {0, 1} is 1 if the object is rigid and 0 if the object

is deformable, z is the height of the RFID location from the

table surface, and zmax is the maximum height of the pile

directly above the RFID tag location.5 Then, we define the

deformable RF kernel as:

5 In our implementation, zmax is the maximum height of the pile within

a 3 cm radius of the tag’s (x,y) location.
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Fig. 6 Spherical and Deformed RF Kernel. a A non-deformed RFID

tagged object. b RFID tagged object that is deformed (compressed in

the vertical direction and expanded in the horizontal direction) under a

pile of objects. c The heatmap of the spherical RF kernel overlayed on

the RFID tagged object if deformation is not considered. d The heatmap

of the deformable RF kernel overlayed on the RFID tagged object when

deformation is considered

md(p, pRF I D)

=

⎧

⎨

⎩

− e
1
2

(p−pRF I D )T �−1(p−pRF I D )

√
2π |�| ‖p − pRF I D‖2 ≤ dl

0 ‖p − pRF I D‖2 > dl

� =

⎡

⎣

σx 0 0

0 σy 0

0 0 σz

⎤

⎦

where � is the covariance matrix, and σx , σy , and σz are the

variances in the x, y, and z dimensions, respectively:

σx = σy = (2 − α(ρ, z))
ds

2

σz = α(ρ, z)
ds

2

5 RF-visual extraction policy

In the previous section, we explained how FuseBot builds a

3D RF-Visual occupancy distribution for a target item’s loca-

tion. Given this distribution, one might think that the robot

could immediately move towards the voxel with the highest

probability to extract the target object. However, since the tar-

get object is fully occluded, the robot cannot directly access

it. Instead, it must first remove anything covering the tar-

get object. In this section, we describe FuseBot’s RF-Visual

extraction policy that decides which object to remove in order

to most efficiently extract the target object.

The goal of designing the extraction policy is to minimize

the overall number of actions required to retrieve the target

object. If the robot was certain of the target item’s location,

it could simply remove anything covering the object, then

extract the target object. However, while FuseBot leverages

RF-Visual perception to minimize uncertainty, the occupancy

distribution may still have multiple areas of high probability,

leaving ambiguity in the target item’s location. One could

think of moving towards the region with the highest proba-

bility and searching for the target object there until it either

finds the object or eliminates the search area. However, this

may result in an inefficient search, especially in complex sce-

narios, where there are multiple large piles. Thus, to enable

efficient retrieval, FuseBot needs an extraction policy that

not only leverages the probability distribution of the target

item’s location but also the expected information gain of a

given action and the likelihood of a successful grasp action.

At the core of enabling an efficient retrieval policy is iden-

tifying the next best object to grasp. To this end, FuseBot

transform its voxel-based representation of the environment

into an object-based representation, which assigns a certain

expected gain for grasping each of the visible objects. To do

this, FuseBot performs instance segmentation which gives

the mask and surface area of each visible object in the scene,

as shown in Fig. 7a. Next, in Fig. 7c, it vertically projects all

the voxels below a given mask onto the mask and integrates

over the mask area. In principle, this provides it with the total

utility of extracting the corresponding item (including both

the probability distribution and information gain).

Note however that the approach of simply projecting all

the probability below an object onto the surface assumes that

removing that object would reveal all the voxels below it.

In practice, this is not true because the object only has a

limited thickness. While FuseBot does not know the thick-

ness of each item, we can safely assume that voxels near

the top of the pile are more likely to be eliminated when an

object is removed. To bias the search towards this informa-

tion gain, FuseBot applies a weighting function that increases

the weights of voxels closer to the surface of the pile. The

sum of these weighted probabilities, or score of each mask,

now optimizes for both the information gain and probable

tag locations for each visible object. The score is formalized

in the below equation:
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Fig. 7 RF-visual extraction. a FuseBot performs depth-based object

segmentation to separate different objects in the environment. b Fuse-

Bot uses the 3D occupancy distribution of the target item. c FuseBot

projects the occupancy distribution on each segmented mask. d Fuse-

Bot sums the projected distribution on the area of each mask, and then

chooses the mask with the highest sum. e FuseBot chooses the next-

best-grasp to extract the target item

si =
∑

x,y∈mi

zmi
∑

z=0

γ
(zmi

−z)

0.025 × px,y,z (4)

where si is the score of mask i, mi is all (x,y) points contained

within the ith mask, zmi
is the maximum z under the ith mask,

and px,y,z is the probability from the occupancy distribution

for point (x,y,z). γ is the discount factor for weighting the

probability.6

Incorporating Grasp Quality While these scores incen-

tivize both exploiting the probability distribution and max-

imizing information gain, they do not account for the

likelihood of failed grasping attempts. To do this, FuseBot

computes the probability of a successful grasp for each point

in the environment using a grasp planning network. FuseBot

then selects the best possible grasp within each object mask.

The grasp qualities of each mask are formalized in the below

equation:

gi ← max
(x,y)∈mi

g(x, y) (5)

where gi is the best grasp probability for the ith mask, g(x, y)

is the grasp probability for point (x,y) given by the grasping

network, and mi is all (x,y) points contained within the ith

mask.

FuseBot now uses the grasping quality and mask scores

to find the optimal extraction policy by optimizing for the

following:

6 In our implementation, γ is set to 0.95.

max
i

si ×
⌈

gi − τ

⌉

where i is the mask number and τ is the threshold for accept-

able grasping quality. gi and si are the grasping quality and

the score for the ith mask, and ⌈.⌉ is the ceiling function.

FuseBot first evaluates objects with a greater than τ grasp

quality, selecting the object with the best weighted proba-

bility score.7 If no high probability grasps are available, it

then selects the object with the best score regardless of grasp

quality. The overall algorithm is summarized in Alg. 1.

A few additional points are worth noting:

• Since the workspace may be larger than the field of view

of the robot’s camera, FuseBot begins by clustering the

occupancy distribution and selecting the area with the

highest average probability. The robot moves over this

area before computing the object masks and grasp qual-

ities and executing the RF-Visual extraction policy. This

ensures that FuseBot can extend to any size workspace

within the robot arm’s reach.

• After each grasp attempt, the robot returns to the position

where it grasps in order to locally update the occupancy

distribution. It takes new RGB-D images to update a

10cm × 10cm × 10cm region around the grasp point,

as well as determine if the target object was uncovered

by the latest grasp.

7 In our implementation, τ is set to 0.8.
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• At any point, if FuseBot identifies the target object, it ends

the RF-Visual extraction policy and proceeds to grasping

the target object.

Algorithm 1 RF-Visual Extraction Policy

while Grasp Actions ≤ 15 do

SEGMENTATION

Compute object segmentation with SDMRCNN(Danielczuk et al.,

2019)

TARGET OBJECT SEARCH

for mask mi in SDMRCNN do

if mi == Target Object then

Grasp Target Object

Return

end if

end for

MASK SCORING

for mask mi in SDMRCNN do

si =
∑

x,y∈mi

∑zmi

z=0 γ
(zmi

−z)

0.025 × px,y,z

gi ← max(x,y)∈mi
g(x, y)

end for

MASK SELECTION

if Any gi > τ then

selected_mask ← maxgi >τ (si )

else

selected_mask ← maxi (si )

end if

Grasp selected_mask

end while

6 Implementation

Physical Setup. We implemented FuseBot on a Univer-

sal Robots UR5e robot (Universal Robots, 2021) with a

Robotiq 2F-85 gripper (Robotiq, 2019). We mounted an

Intel Realsense D415 depth camera (Intel RealSense, 2019)

and two WA5VJB Log Periodic PCB antennas (850–6500

MHz) (Kent Electronics, 2021) on the gripper. The antennas

are connected to two Nuand BladeRF 2.0 Micro software

radios (Nuand, 2021) through a Mini-Circuits ZAPD-21-S+

splitter (0.5−2.0 GHz). To obtain RFID locations, we imple-

mented an RFID localization module using the wrist mounted

antenna and BladeRFs through a similar method as past work

(Ma et al., 2017; Boroushaki et al., 2021b). We used standard

off-the-shelf UHF RFID tags (the Smartrac DogBone RFID

(Inlay, 2021)) that costs around 3–5 cents.

Control Software The system was developed and tested on

Ubuntu 20.04 and ROS Noetic. We used MoveIt [31] as the

inverse-kinematic solver to control the robot through the UR

Robot Driver package (Universal Robots ROS Driver, 2020).

Fig. 8 Example evaluation scenarios. This shows some of the evalua-

tion scenarios for a 1 pile, b 2 piles, and c 3 piles. The target item is

fully occluded in all the scenarios

The visual map of the environment is created using Octomap

(Hornung et al., 2013). We used Synthetic Depth (SD) Mask

R-CNN (Danielczuk et al., 2019) to perform instance seg-

mentation of the scene and segments objects in the scene.

To predict the grasping quality from the depth images, we

used GG-CNN (Morrison et al., 2018a, b). The baseline, X-

Ray (Danielczuk et al., 2020) was implemented based on the

published code (Danielczuk et al., 2021).

7 Evaluation

7.1 Real-world evaluation scenarios

We evaluated FuseBot in a variety of real-world scenarios

with varying complexity, some of which can be seen in Fig. 8.

The scenarios had between 1 and 3 distinct piles of items,

0–10 RFID tagged objects, and a variety of target object

and RFID tagged object sizes. Each experiment had one

target item and 10–40 other distractor objects. Experiments

included varying distances between the target item and the

nearest RFID tagged item, including setups with an RFID

tagged item touching the target item, RFID tagged items in

the same pile as the target item, or all RFID tagged items in

different piles than the target item. We also evaluated Fuse-
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Bot in scenarios where the target object was tagged with an

RFID.8

Similar to prior work (Danielczuk et al., 2020) that uses

color-based object identification for simplicity, the target

item is a red item and FuseBot uses an HSV color segmen-

tation to identify when the target item is in line-of-sight. We

note that this step can be replaced by any target template

matching network such as the one used in Danielczuk et al.

(2019) to identify target objects of any type.

We use everyday objects, both deformable and solid, in

our evaluation, including office supplies, toys, and house-

hold items like gloves, beanies, tissue packs, travel shampoo,

stuffed animals, and thread skeins.

7.2 Baselines

We compared FuseBot’s performance with X-Ray (Daniel-

czuk et al., 2020). X-Ray works by estimating 2D occupancy

distributions and selecting the object with the highest total

probability within its mask to pick up. X-Ray relies entirely

on visual information and has no mechanism for RF-

perception.

7.3 Metrics

Number of actions We measured the number of grasping

actions that were needed to extract the target item from the

environment. Actions include grasping a non-target object,

target object, or failing to grasp anything.

Success rate We also evaluated the success rate of our system

and the baseline. An experimental trial was considered a fail-

ure if the robot performed 15 actions and failed to retrieve the

target item, or if the robot performed 5 consecutive grasping

attempts that failed to grasp any item.

Search and retrieval time We measured the time during

which the robot was moving in each successful mechanical

search and retrieval task. For FuseBot, this time included the

scanning step required to localize the RFIDs.

8 Results

8.1 Baseline comparisons

We evaluated FuseBot and X-Ray in 181 real-world exper-

imental trials. The experiments covered multiple different

scenarios of various complexities with 1–3 piles, 0–10 RFID

tagged items, and different target object sizes. We tested X-

Ray and FuseBot in the exact same scenarios, but we repeated

8 Unless otherwise stated, we leverage a spherical RF kernel in our

experiments.

FuseBot multiple times in each scenario with different com-

binations of RFID tagged item locations and numbers. We

measured the number of actions it took to find and retrieve the

target item, the success rate of each system, and the search

and retrieval time for each system. Recall from Sect. 7(c) that

an experimental trial is considered successful if the robot can

find and retrieve the target item within 15 actions.

8.1.1 Overall number of actions

Table 1 shows the 10th, 50th, and 90th percentiles of the num-

ber of actions required to find and extract the target object. It

includes results from FuseBot with RF-tagged target objects,

FuseBot with non-tagged target objects, and X-Ray. We make

the following remarks:

• FuseBot needs only 3 actions at the median to retrieve

non-tagged target item, improving 40% over X-Ray’s

median number of actions of 5. This shows that FuseBot

is able to retrieve non-tagged target items more efficiently

than the state-of-the-art vision-based baseline across a

variety of scenarios.

• The 90th percentile of FuseBot with non-tagged items

is 6 actions, while X-Ray’s 90th percentile is 11 actions.

This shows that FuseBot is able to perform more reliably,

with a 45% improvement over the state-of-the-art at the

90th percentile.

• When searching for a tagged target item, FuseBot

requires only 2 actions on median, and 5 actions for the

90th percentile. Note that here it performs better than

extracting a non-tagged item. This is expected because

localizing the tagged target item reduces the uncertainty

about its location and makes mechanical search more

efficient. This result shows that FuseBot’s performance

matches that of past state-of-the-art systems that are

designed to extract RFID-tagged items (Boroushaki et

al., 2021b)9; moreover, unlike these prior systems, Fuse-

Bot’s benefits also extend to non-tagged items.

8.1.2 End-to-end success rate

Table 1 reports the end-to-end success rate. The results show

that FuseBot is able to retrieve the target item 95% of the

time for non-tagged and tagged target objects, while X-Ray

is only able to do so in 84% of scenarios. This demonstrates

that FuseBot not only improves the efficiency, but also the

success rate of mechanical search.

9 See Fig. 14 in Boroushaki et al. (2021b).
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Table 1 Efficiency and success

rate
System Number of actions Success rate (%)

10th pctl Median 90th pctl

FuseBot (untagged) 2 3 6 95

FuseBot (tagged) 2 2 5 95

X-Ray 2 5 11 84

The table shows the success rate as well as the 10th, 50th, and 90th percentiles for the number of actions for

both FuseBot and X-ray. The performance of FuseBot is shown for scenarios where the target item is tagged

and where it is non-tagged

Table 2 Search and retrieval

time
System Search and retrieval time (s)

10th percentile Median 90th percentile

FuseBot (untagged) 40 62 132

X-ray 50 142 237

The table shows the 10th, 50th, and 90th percentiles for the search and retrieval time of both FuseBot and

X-Ray

8.1.3 Search and retrieval time

Table 2 shows the search & retrieval time for both FuseBot

and X-Ray. Here, it is worth noting that the robot was pro-

grammed to move at the same speed across all experimental

trials. We make the following remarks:

• FuseBot only requires 62 s at the median, while X-Ray’s

median is 142 s, showing more than 2x improvement over

the baseline’s performance.

• The 90th percentile of FuseBot is 132 s, while X-Ray

requires a 90th percentile of 237 s, showing the improve-

ment in reliability of FuseBot over X-Ray.

• This improvement in search & retrieval time shows that

FuseBot is more efficient than the baseline despite requir-

ing an additional scanning step.

8.1.4 Scenario complexity

We evaluated FuseBot for non-tagged target objects and X-

Ray across three scenarios of different complexities.

• In the first level of complexity, the systems were evaluated

on a setup with 2 distinct piles of objects and a total of

20 distractor objects.

• In the second level of complexity, the systems were eval-

uated on a setup with 3 distinct piles of objects and a total

of 25 distractor objects.

• In the third level of complexity, the systems were evalu-

ated on a setup with 3 distinct piles of objects and a total

of 42 distractor objects.

Figure 9a plots the number of actions required to find and

retrieve the target object for both FuseBot (green) and X-Ray

(blue) across three scenarios of different complexities. The

error bars indicate the 10th and 90th percentiles. We make

the following remarks:

• Across all levels of complexity, FuseBot outperforms the

baseline in terms of both its median and 90th percentile

efficiency. This shows that the benefits of RF-perception

extends to complex scenarios.

• In more complicated scenarios with a larger number of

distractor objects, both FuseBot and X-Ray require more

actions to retrieve the target item. Interestingly, for more

complex scenarios, FuseBot’s efficiency gains increase

over the baseline.

8.2 Microbenchmarks

In addition to baseline comparisons, we performed microbench-

marks to quantify how different factors impact the perfor-

mance of FuseBot.

8.2.1 Number of RFID tagged items

Recall from 4.3 that FuseBot creates an RF kernel for each

identified and localized RFID tagged item, and uses the

kernels to build the occupancy distribution. The occupancy

distribution gives FuseBot better insight into the location of

the target item. We quantified how the system performs with

different numbers of RFID tagged items through 54 experi-

ments in the same scenario with varying numbers of RFIDs.

In this scenario, we have 3 different piles with a total of 25

objects.

Figure 9b plots the number of actions required to retrieve

the target item vs. the number of localized RFIDs in the envi-

ronment for FuseBot (green) and X-Ray (blue). The error

bars denote the 10th and 90th percentiles. Since X-Ray does
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Fig. 9 Impact of different parameters on performance. a This figure

plots the number of actions required by both FuseBot and X-ray across

three different scenarios of increasing complexity. b The figure plots

the number of actions versus the number of localized RFIDs across

fully occluded real-world experiments. c This figure plots the median

number of actions for FuseBot to retrieve the target item for different

RFID to target item distances. X-ray’s median number of actions across

all scenarios is shown in blue. The error bars denote the 10th and 90th

percentile respectively

not utilize RFIDs, the results are not separated by number of

RFIDs. We make the following remarks:

• As the number of localized RFIDs in the environ-

ment increases, FuseBot’s median number of actions

decreases, dropping from 4 with no RFIDs to 2 with only

6–9 RFIDs. This improvement in efficiency is expected,

because additional RFID tagged items increase the num-

ber of RF kernels, which in turn narrows down the

candidate locations for the non-tagged target item. More

generally, this result shows that leveraging RF percep-

tion improves the efficiency of mechanical search, and

that the improvement is proportional to the number of

RFID tagged items.

• Interestingly, even with 0 RFIDs, FuseBot outperforms

X-Ray. Specifically, it requires a median of only 4 actions,

while X-Ray requires 7 for the same scenario. This is due

to two main reasons. First, while FuseBot leverages a 3D

distribution, X-Ray only uses a 2D probability distribu-

tion which does not account for the height of different

objects. Second, unlike FuseBot, X-Ray does not account

for grasp quality when selecting an object to remove from

the pile. This makes it susceptible to choosing objects that

are more difficult (hence less efficient) to grasp.

8.2.2 Distance from nearest RFID to target item

Our next microbenchmark aims to investigate whether the

presence of an RFID-tagged item near the target item would

impact the performance. Specifically, one concern with

applying the negative mask is that it biases the extraction

policy away from the RFID-tagged item. To investigate this,

we ran 51 real-world experiments across three scenarios:

• Touching In this category, there is at least one RFID

tagged item in direct contact with the target item.

• Opposite Side of Pile In this category, all RFIDs are either

on the opposite side of the target item’s pile or in different

piles than the target item.

• Different Piles In this category, all RFIDs are in different

piles than the target object.

Figure 9c plots the median number of actions required to

find the target item in each of the three categories of scenarios

described above, shown in green. The error bars denote the

10th and 90th percentiles. For comparison, the blue bar show

the performance of X-Ray in the same scenario. Since X-Ray

does not leverage RFIDs, its performance is not separated

into different categories.

We make the following remarks:

• Different Piles, Opposite Side of Pile, and Touching

require only 2, 3, and 3 actions at the median, respec-

tively. However, X-Ray requires 7 actions to retrieve the

target item. This shows that FuseBot outperforms the

baseline across all categories of scenarios, even when

an RFID tagged item is touching the target object.

• In Touching, the median number of actions is similar to

Different Piles and Opposite Side of the Pile, however

the 90th percentile is worse. This is expected because the

negative RF mask biases the search away from the target

object. However, it is important to note that the 90th is

only 5 actions.

8.2.3 Impact of extraction policy

Next, we evaluate the benefits of FuseBot’s RF-Visual extrac-

tion policy. To do so, we compare to the performance of a

naive extraction policy. Unlike FuseBot’s policy, this naive

policy is designed such that the robot is unaware of the indi-

vidual objects on the pile, and therefore does not have a

way to estimate the expected information gain of remov-

ing an item. This naive policy operates in two steps: first, it
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Table 3 Impact of extraction policy on efficiency

Extraction policy Number of actions

10th pctl Median 90th pctl

RF-visual extraction 2.0 2.5 4.0

Naive extraction policy 2.1 4.0 6.9

The table shows the 10th, 50th, and 90th percentiles of the number of

actions of FuseBot with different extraction policies

selects the voxel with the highest probability in the RF-Visual

occupancy distribution (from RF-Visual Mapping); then, it

performs the best grasp that is within 5 cm of the voxel’s

projection on the surface of the pile.

Table 3 shows the 10th, 50th, and 90th percentiles of the

number of actions required to successfully extract the target

item for FuseBot with both extraction policies for the same

set of scenarios with a fully-occluded untagged target item.

The result shows that the RF-Visual extraction policy allows

FuseBot to successfully complete the task with 2.5 median

actions. In contrast, when using the naive extraction policy, it

requires 4 median actions. Furthermore, the 90th percentile

of FuseBot’s extraction policy is only 4 actions, while the

naive policy requires 6.9 actions. This performance improve-

ment is due to the fact that FuseBot’s RF-Visual extraction

policy optimizes for information gain, allowing it to search

the environment more efficiently than the simpler extraction

policy.

8.2.4 Impact of deformable RF kernel

Recall from Sect. 4.5 that FuseBot can leverage deformable

RF kernels to more accurately model deformable RFID

tagged objects. The aim of this benchmark is to evaluate the

performance improvement of this model. We evaluated Fuse-

Bot with both spherical and deformable RF kernels. We ran

20 trials across multiple scenarios where at least one RFID

tagged item was deformable and FuseBot was tasked with

retrieving a non-tagged target item that was fully occluded

under the piles. In order to ensure a fair comparison, we

did not include failed grasp attempts in the total number

of actions for this microbenchmark as they were caused by

grasping network errors rather than RF Kernels.

Table 4 compares the number of actions needed to retrieve

target item when using deformable RF kernels compared to

spherical RF kernels. We make the following remarks:

• FuseBot with deformable RF kernels retrieved the target

object with median of 3.0 actions and 90th percentile

of 4.0 actions. However, FuseBot with spherical kernel

required a median of 4.0 actions and 90th percentile of

6.2 actions to finish the same tasks. This demonstrates

Table 4 Impact of deformable RF kernel on efficiency.

Number of actions

RF kernels 10th pctl Median 90th pctl

Deformable 2.0 3.0 4.0

Spherical 3.0 4.0 6.2

The table shows the 10th, 50th, and 90th percentiles of the number of

actions that FuseBot needed to finish the retrieval tasks with deformable

RF Kernels and with spherical RF Kernels

that accounting for object deformability in RF kernels

further improves the system’s efficiency.

• Importantly, FuseBot with spherical kernels was still able

to successfully retrieve the target object in all trials.

This shows that despite decreased efficiency, FuseBot’s

probabilistic approach still allows for successful task

completion despite inaccurate kernel models.

8.2.5 RFID localization accuracy

In our final microbenchmark, we evaluated the accuracy of

FuseBot’s RFID localization over 37 experiments. To evalu-

ate the impact of occlusions on RFID localization accuracy,

we computed the error in two cases: one where the tag was in

line-of-sight (LOS) to the antennas and one where the tag was

in non-line-of-sight (NLOS) (e.g., covered by clothes, stuffed

animals, etc). We used the Optitrack motion capture system

(Optitrack, 2017) to obtain accurate ground truth locations.

Since the RF signal can emanate from any position on the

RFID tag, we measure the error as the L2 norm between the

estimated RFID location and the nearest point on the RFID

tag.10

Table 5 shows the RFID localization accuracy in LOS,

NLOS and overall. We make the following remarks:

• FuseBot is able to accurately localize RFIDs, achiev-

ing a median of 3.6 cm and a 90th percentile of 6 cm

of error. We note that this level of error is typically less

than the dimensions of the object to which the RFID

object is attached, allowing FuseBot to accurately model

the environment. We also note that FuseBot’s probabilis-

tic approach is specifically designed to account for these

small errors.

• The localization accuracy in LOS and NLOS scenar-

ios is very similar, with the median error increasing

by less than half a cm and the 90th percentile increas-

ing by 1 cm in NLOS scenarios. This is expected since

RF signals can go through most occlusions, and this

10 We performed a one-time calibration to remove offsets from the

localization.
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Table 5 RFID tags localization error

Localization environment RFID localization accuracy (m)

10th pctl Median 90th pctl

LOS 0.015 0.034 0.055

NLOS 0.023 0.038 0.065

Overall 0.017 0.036 0.060

The table shows the 10th, 50th, and 90th percentiles of L2 norm of

localization error of RFIDs in line of sight, non line of sight, and all

scenarios

matches results reported in state-of-the-art RFID local-

ization work (Boroushaki et al., 2021b).

9 Discussion and conclusion

This paper presented FuseBot, the first RF-Visual mechani-

cal search system that leverages RF perception to efficiently

retrieve both RF-tagged and non-tagged items in the envi-

ronment. The paper presents novel primitives for RF-Visual

mapping and extraction and implements them into a real-time

prototype evaluated in practical and challenging real-world

scenarios. Our evaluation demonstrated that the mere exis-

tence of RFID-tagged items in the environment can deliver

important efficiency gains to the mechanical search problem.

Our evaluation of FuseBot in end-to-end retrieval tasks

also revealed a number of interesting insights. While Fuse-

Bot’s design focused on retrieving untagged target items,

our results showed that its efficiency in extracting RFID

tagged target objects matches that of state-of-the-art RF-

Visual mechanical search systems that can only extract

RFID-tagged objects. Our evaluation also showed that Fuse-

Bot is successful and efficient in performing mechanical

search across piles with deformable objects.

In conclusion, with the rapid and widespread adoption of

RFID tags across various industries, this paper uncovers how

RF perception can play a role in making robotic tasks more

efficient and reliable for various industries such as warehous-

ing, manufacturing, retail, and others.
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