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Abstract
This paper presents the design, implementation, and evaluation of
mmNorm, a new and highly-accurate method for non-line-of-sight
3D object reconstruction using millimeter wave (mmWave) signals.
In contrast to past approaches for millimeter-wave-based imaging
that perform backprojection for 3D object reconstruction, mmNorm
reconstructs the surface by estimating the object’s surface normals.
To do this, it introduces a novel algorithm that directly estimates
the surface normal vector �eld from mmWave re�ections. By then
inverting the normal �eld, it can reconstruct structural isosurfaces,
then solve for the exact surface through a novel mmWave optimiza-
tion framework.

We built an end-to-end prototype ofmmNormusing a TI IWR1443
Boost mmWave radar and a UR5e Robotic Arm, and evaluated it
in over 110 real-world experiments across more than 60 di�erent
everyday objects. In a head-to-head comparison with state-of-the-
art baselines, mmNorm achieves 96% reconstruction accuracy (3D
F-score) compared to 78% for the best-performing baseline. These
results show that mmNorm is capable of high-accuracy mmWave
object reconstruction. The codebase and a video demonstration are
available here: https://github.com/signalkinetics/mmNorm
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• Computer systems organization→ Sensor networks; • Net-
works→ Sensor networks.
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1 Introduction
The past few years have witnessed growing interest in millimeter
wave (mmWave) based reconstruction in the mobile community [12,
19, 24, 77]. Unlike classical vision-based imaging systems, which are
limited to line-of-sight, these mmWave-based systems can operate
in non-line-of-sight (NLOS) conditions, enabling them to sense
objects in closed boxes and beneath occlusions. This is because
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Figure 1: mmNorm. a) We build a real-world prototype with a 77 GHz radar,
robotic arm, & RGB-D camera for ground-truth. b) The ground-truth surface of a spoon.
c) Classical mmWave reconstruction produce poor 3D reconstruction. d) mmNorm
achieves high accuracy reconstructions.

mmWave signals can traverse through many everyday occlusions
(e.g., cardboard, fabric, etc) [6, 41, 47], and re�ect o� objects behind
these occlusions, allowing them to produce images of the occluded
objects. This capability, combined with the recent emergence of low-
cost commercial mmWave radars, has the potential to enable many
promising applications. For example, pick-and-place robots can
leverage non-line-of-sight reconstructions to �nd and manipulate
hidden objects, such as those beneath clutter or within a closed box.
Similarly, Augmented Reality (AR) devices could leverage them
to perceive occluded objects and display them to the user, truly
augmenting our human perception. Smart home devices can use
them for NLOS gesture recognition, to enable non-verbal commands
even when users are hidden from view.

However, enabling these applications requires accurate 3D object-
level reconstructions. For example, robots rely on precise 3D re-
constructions to reason about complex interactions with the envi-
ronment, and execute successful manipulation tasks (e.g., grasping,
pushing, etc). Additionally, more representative object reconstruc-
tions would signi�cantly improve AR user experience. Furthermore,
smart home devices would require precise reconstructions to iden-
tify small di�erences between gestures and execute the correspond-
ing commands.

Unfortunately, existing approaches for mmWave-based 3D object
reconstruction cannot deliver on these applications due to their
low accuracy. To see why, it is helpful to �rst understand a typical
mmWave reconstruction output in a real-world setting, such as
the one shown in Fig. 1. Here, we attached a commercial mmWave
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Figure 2: mmNorm’s Design. a) Only some points on the surface will re�ect signals back to the radar, due to specularity. b) mmNorm estimates normals through a coherent
�lter. c) mmNorm produces a normal vector �eld. d) mmNorm represents all valid reconstructions through a RSDF.

radar to a robotic arm,1 as shown in Fig. 1a, and used an RGB-D
camera to provide the ground truth.2 Fig. 1b shows the ground-
truth point cloud in red, and Fig. 1c shows a standard mmWave
point cloud reconstruction in blue [19]. Here, the classical mmWave
reconstruction approach does not accurately represent the surface
geometry. For example, the classical reconstruction contains points
spread across a wide volume in space. In fact, the reconstruction
covers a volume almost twice the size of the original object. This
poor level of reconstruction would, for example, make it di�cult for
a robot to plan successful grasps for this object, since it is di�cult
to identify the location of the handle.

The reason why existing approaches are limited is inherent to
how they perform 3D reconstruction. Speci�cally, the vast majority
of existing approaches start by leveraging a raytracing-based imag-
ing algorithm (such as backprojection [79] or the range-migration
algorithm [25, 68]) to generate a 3D mmWave image. Then, this
image is directly used to generate an occupancy distribution. For
example, to create object point clouds, it is common to select all
voxels in the 3D mmWave image above a certain power thresh-
old [7, 19, 24], as we demonstrated in the example above.

Unfortunately, this approach is limited by the available band-
width of the mmWave radar. Since commercial mmWave radars
have a bandwidth of at most about 4GHz3, their depth resolution
is limited to ∼4cm, which leads to a corresponding distortion in
occupancy-distribution based point clouds. This is why, in the above
example, the reconstruction is smeared in the depth (vertical) di-
mension. While this resolution is su�cient for reconstructing large
objects, such as buildings or vehicles [7, 24, 57], it is not su�cient for
applications that require object-level 3D reconstruction. For exam-
ple, a pick-and-place robot requires sub-cm reconstruction quality
to reliably grasp an object, such as a tool, bottle, or utensil[64].

In this paper, we depart from this classical approach, and propose
mmNorm, a fundamentally new method for mmWave 3D object
reconstruction. Let us �rst see the bene�t of our method through
a real-world result in Fig. 1d. Here, our reconstruction (purple)
closely matches the ground-truth and signi�cantly outperforms the
classical method.

Our key idea behindmmNorm’s design is that, instead of estimat-
ing occupancy distribution from ray tracing, we directly estimate

1The robotic arm moves the mmWave radar to construct a synthetic aperture radar,
similar to prior work [6, 19].
2While the mmWave image is collected in NLOS, to capture the ground truth, we
remove the occlusion to capture an RGB-D image in line-of-sight.
3The bandwidth is typically limited by government regulations. While some work has
investigated reconstruction with larger bandwidths, these systems are restricted to
non-commercial or government use [16].

the object’s curvature, then use this to generate a high-accuracy 3D
reconstruction. We explain our high-level approach through Fig. 2.
First, to estimate an object’s curvature, we rely on the fact that most
objects exhibit primarily specular (i.e., mirror-like) re�ections at
mmWave frequencies [43]. This creates a relationship between the
radar’s received re�ections and the object’s surface normals (which
de�ne an object’s curvature). For example, in Fig. 2a, when measur-
ing the response from the surface (shown in light-blue), the antenna
location on the left (shown in the dark-blue) will primarily receive
re�ections from the two points on the surface where the normal
(shown by dark blue arrows) points directly towards the antenna.
Other points on the surface will mostly re�ect signals away from
that antenna’s location. In another example, the antenna location
shown in green will receive responses from a di�erent point on the
surface (shown by the green arrow).

Using this core insight, we design mmNorm to estimate surface
normals and use these to directly estimate the object’s curvature.
At the heart of its method is the following fundamental observation:
each point on the object’s surface has a surface normal that is di-
rected toward the antenna position receiving that point’s strongest
re�ection. mmNorm’s goal is to solve the inverse problem to this
observation. To do so, its method introduces the following three
techniques:
1. mmWave Surface Normal Estimation. First, mmNorm aims to es-
timate the surface normals of the object through a coherent �lter
using mmWave re�ections. Let us explain this method using the
illustration shown in Fig. 2b. The �gure shows an object’s surface
in light blue, and the brown circle highlights the point for which we
will estimate the surface normal vector. We start by constructing
"candidate" surface normals from this point towards each radar
location. Then, we allow di�erent radar locations to "vote" on the
direction of the normal based on the re�ections received at that
location. For example, the orange radar location receives a strong
re�ection from this point, so it will cast a strong vote shown by the
orange arrow. In contrast, the red radar locations receive weaker
re�ections and therefore will cast weaker votes. Finally, we geomet-
rically combine these votes to produce a �nal normal estimate, as
shown by the dark blue arrow. Since this method is applied to every
point in 3D space, not just points on the surface (as their locations
are unknown a priori), it results in a normal vector �eld like that
shown by the dark blue arrows in Fig. 2c. We describe this method,
including how we design a coherent �lter to produce each radar’s
"vote", in more details in §2.
2. mmWave Normal Field Inversion. Next, mmNorm aims to invert
the �eld to produce the surface geometry. However, each vector �eld
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Figure 4: The Surface Normal to mmWave Image Relationship. The mmWave image will only contain the portion of the
surface with normals pointing within the aperture.

de�nes multiple possible surfaces. For example, Fig. 2c shows two
example surfaces in red and purple which are valid reconstructions
de�ned by the vector �eld, but are far from the ground-truth surface
shown in light blue. Thus, it is infeasible to directly recover a
single surface from the vector �eld. To address this, our next step is
mmWave Normal Field Inversion. Here, we adapt a technique from
computer vision called Signed Distance Function. Speci�cally, we
design a Relative Signed Distance Function (RSDF), which enables
us to model all possible reconstructions as isosurfaces4 of a single
3D implicit function. We show an example of this function with
the color gradient in Fig. 2d. In §3, we describe how we adapt this
technique to our problem domain to invert the mmWave vector
normal �eld by accounting for the RF and geometric characteristics
of the mmWave �eld.
3. mmWave Structural Isosurface Optimization. The �nal step of
mmNorm’s design aims to select the optimal isosurface. This tech-
nique overcomes the aforementioned surface ambiguity by evalu-
ating how well di�erent candidate isosurfaces correspond to our
received signals. To do this, for a given isosurface, it simulates the
signal that would be re�ected from that surface to each radar loca-
tion. Then, it formulates a cost function as the di�erence between
these simulated signals and actual received signals. By optimizing
across cost, it can identify optimal isosurfaces, as we detail in §4.

We built an end-to-end prototype of mmNorm, consisting of a
TI IWR1443Boost radar attached to a UR5e robot arm. The robot
moves the radar to produce a 2D synthetic aperture above the target
object. We evaluate the 3D surface reconstruction across over 60
objects in the MITO dataset [18], a mmWave dataset of common
everyday objects for robotic manipulation. We include results in
both line-of-sight and non-line-of-sight. Our empirical evaluation
demonstrates that:

• mmNorm achieves 96% reconstruction accuracy (3D F-score),
compared to 78% for the best-performing baseline.

• By zooming in on individual points, our evaluation shows that
in the best-performing baseline, only 44% of the points have
less than 5% reconstruction error (displacement error relative to
object’s size), in contrast to 85% for mmNorm.

Contributions: This paper presents mmNorm, a �rst-of- its-kind
method for mmWave-based 3D object reconstruction, which oper-
ates using surface normal estimation. It introduces multiple inno-
vations, including mmWave Surface Normal Estimation, mmWave

Normal Field Inversion, andmmWave Structural Isosurface Optimiza-

tion. Finally, the paper also contributes an end-to-end prototype
and real-world evaluation, which demonstrates its accuracy and
robustness.

In re�ecting on these results, one might wonder how mmNorm
achieves such high-accuracy reconstruction without additional

4An isosurface is a surface where the value of a 3D function is constant.

bandwidth. In backprojection-based reconstruction, there is a di-
rect relationship between the available bandwidth and the resulting
resolution. In contrast, mmNorm operates in a di�erent subspace.
The mathematical derivation of this subspace, and the theoretical
limitations of mmNorm is an interesting avenue for future work.

2 mmWave Surface Normal Estimation
The �rst step of mmNorm’s reconstruction pipeline is to directly
estimate an object’s surface normal vector �eld from mmWave
re�ections. In this section, we �rst describe the underlying relation-
ship between the object’s surface normal, the radar location, and
the resulting mmWave image. Then, we describe how we leverage
this relationship when designing our mmWave surface normal �eld
estimation algorithm.

2.1 The Normal to Image Relationship
To understand the impact of an object’s surface normals on its
mmWave image, it is helpful to understand how themmWave image
is obtained in the �rst place. Typical mmWave imaging systems
leverage the concept of synthetic aperture radar [38, 44]. In these
systems, a radar is moved through space to collect measurements
from di�erent locations, which together form a "synthetic aperture".
At each location in the synthetic aperture, a radar transmits a signal,
which re�ects o� the object and is received back at the radar.

However, the radar will not receive re�ections from all points on
the object’s surface. This is because, at mmWave frequencies, most
objects exhibit primarily specular (i.e., mirror-like) re�ections [43],
where the angle of incidence is equal to the angle of re�ection.5 This
phenomenon can be seen through Fig. 3, where we demonstrate it
in 2D for simplicity. Here, we show one radar location within the
synthetic aperture in black. First, we consider a signal transmitted
along the purple line. In this case, the signal will re�ect o� the
light-blue object and away from the radar (due to specularity),
preventing the radar from ever receiving this re�ection. Next, we
consider a signal transmitted along the red line. In this case, the
signal is re�ected back to the radar, allowing the radar to properly
receive the re�ection. This is because this portion of the surface
has a normal, shown by the red arrow, which is directed towards
the radar. Thus, the radar will only receive re�ections from the
portions of the surface where the normal points directly towards
the radar.

This phenomenon creates a relationship between the radar loca-
tions, the object’s surface normal, and the resulting mmWave image.
We demonstrate this through an example in Fig. 4. Here, we show
the cross-section view of a simulated mmWave image, where the

5A surface is considered electromagnetically smooth if the surface height variations are

less than _
8 cos(\8 )

, where \8 is the incident angle [53]. For a 77 GHz system, surfaces

exhibit di�use scattering re�ections when surface height variations are >0.49mm,
which is very rough to human touch.
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Figure 6: mmWave Coherent Filter. Our coherent
�lter employs projection magnitudes.

simulated aperture is shown by the pink line, the simulated surface
is shown by the white line, and the surface’s ground truth normal
vectors are shown by the gray arrows. We simulated the received
re�ections at each radar location using a standard free-space path
loss simulation [18, 72], and produced a mmWave image using the
standard near-�eld backprojection algorithm [79]. The heatmap
shows the magnitude of the resulting mmWave image, where red
and blue represents areas of high and low re�ection power, respec-
tively. In the �rst example in Fig. 4a, the full surface is contained
within the red region of the image. This is because all of the sur-
face’s normal vectors point within the aperture, so re�ections from
every portion of the surface can be received from at least one radar
location. Next, we show two more examples in Fig. 4b/c, where
we image the same surface with a smaller portion of the aperture.
Here, only a small portion of the surface is within the red region.
This is because these sub-apertures only receive re�ections from
the portions of the surface where the normal vectors are pointing
within the sub-aperture, and all other portions of the surface re�ect
signals away (due to specularity).

Based on these results, we can now understand the following
two key points about the relationship between the mmWave image
and the object’s surface normals:
• If we incorporate measurements only from a small sub-aperture
in the imaging, we will only see part of the surface – i.e., other
parts entirely disappear as we see in Fig. 4b/c.

• The portion of the surface that can be seen in the mmWave image
depends on the normals – i.e., we will only see the portion with
normals pointing towards the sub-aperture.

These observations reveal the relationship between the normal
vector, radar location, and mmWave image value.

Note, however, that the mmWave image alone is not enough to
reconstruct the surface. This is because while the surface (white)
lies within the red region in the mmWave image of Fig. 4a, the
red region covers a much larger area than the surface itself (due to
limited bandwidth). This necessitates amore sophisticated approach
for surface normal estimation.

2.2 mmWave Normal Field Estimation
Next, we describe how we can leverage the above relationship to
design a surface normal estimation algorithm.

To start, we consider a single voxel in 3D space. If we draw a
straight line between the voxel and each radar location, we would
trace out di�erent candidate normals vectors. Then, if we can iden-
tify which radar locations contributed the most to this voxel’s
mmWave image value,6 we can combine their candidate vectors
to form our �nal estimate of the surface normal at that point. The

6Here, the mmWave image refers to one similar to that of Fig. 4.

question becomes: how do we identify the radar locations that
contribute most?

To answer this question, we break each voxel’s mmWave image
value down into the components that result from each individual
radar location within the aperture. We then allow each radar loca-
tion to "vote" on the direction of the surface normal based on how
strongly it contributes to the voxel’s mmWave image. By geometri-
cally combining the votes, we can estimate the surface normal.

We explain how our method estimates the normal at a given
voxel E8 , using Fig. 5 as an example. The �gure depicts an example
scenario, where an object surface is shown in blue, and the given
voxel is outlined in brown. We describe our method through the
following three steps:
(1) First, we construct a set of candidate normal vectors. For ex-

ample, Fig. 5a shows the candidate vectors as black arrows,
where each candidate is a unit vector pointing from the voxel
towards one radar location (shown in gray) within the synthetic
aperture. Formally:

u8,9 =
? 9 − E8

| |? 9 − E8 | |
(1)

where D8, 9 is the candidate unit normal vector pointing from

voxel E8 to the jth radar location ? 9 .
(2) Next, we allow each radar location to "vote" on the correct sur-

face normal. We do so by using the received signal from each
radar location to assign a weight to its associated candidate vec-
tor. This is shown in Fig. 5b, where the colored arrows represent
the weighted candidate vectors. Vectors in the direction of the
surface normal will have a large weighting, such as the orange
vector. We describe our method for calculating this weighting
function in §2.2.1. Formally, our weighted candidates are:

r8,9 = F8,9u8,9 (2)

where A8, 9 is the jth weighted candidate vector for voxel E8 .F8, 9

is the weighting value for the jth radar location.
(3) Finally, we compute the �nal surface normal estimate as the

weighted sum of all candidate vectors, as shown by the blue
arrow in Fig. 5c. Formally:

n̂8 =
1

| |
∑�

9=1 r8,9 | |

�
∑

9=1

r8,9 (3)

where =̂8 is the (normalized) surface normal vector estimate,
and A is the number of radar locations.

By applying the above process for each voxel in 3D space, we
estimate the full surface normal vector �eld of the object.

2.2.1 mmWave Candidate Weighting Function. Next, we describe
how we compute the weighting values for di�erent candidate vec-
tors of a given voxel (i.e., step 2 above). At a high level, our weight-
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ing values depend on a coherent �lter which we design to identify
how much each radar location contributes to the �nal mmWave
image value at this voxel.

To understand our �lter design, it is helpful to �rst understand
how the mmWave image is created. Consider a mmWave image
which is constructed using the standard near-�eld matched-�lter
method [79]. In this case, to compute the image value at a given
voxel, the algorithm �rst computes individual values from each
radar location. It does so by correlating each received signal with
the appropriate round-trip distance to the voxel. Formally, since
mmWave radars typically leverage frequency-modulated continu-
ous waves (FMCW), we apply a wide-band correlation as:

� 9 (E8 ) =

)
∑

C=1

ℎ 9 (C )4
92c (2| |? 9 −E8 | |)/_C (4)

where � 9 (E8 ) is the complex value of E8 for the jth individual radar

location. _C is the wavelength of the tth sample (out of ) ) in the
FMCW chirp, ℎ 9 (C) is the tth sample of the time-domain baseband

received signal from the jth radar location.
Then, the �nal complex voxel value, ( (E8 ), is computed as the

sum across all the values from individual radar locations:

( (E8 ) =

�
∑

9=1

� 9 (E8 ) (5)

Now, the goal of our �lter is to determine how much each in-
dividual voxel value, � 9 (E8 ), contributed to the �nal complex sum,
( (E8 ). To do so, we project the individual voxel values onto the
computed sum, ( (E8 ). We show two examples in red and purple in
Fig. 6, which plots the complex values as vectors on the IQ plane. It
is important to note that these vectors represent complex values,
and not the direction of candidate surface normal vectors. The �nal
mmWave voxel value (( (E8 )) is shown as the blue vector. First, we
consider an antenna which is in the direction of the surface normal
Since it received a strong re�ection from this voxel, it’s complex
value (red) will contribute strongly to the sum, and thus will point
in a similar direction as the sum. Therefore, its projection onto the
sum (the dotted red arrow) will have a large magnitude. Next, we
consider an antenna not in the direction of the normal. It will not
receive a strong re�ection from this voxel, and thus its value will
not be related to the sum. Here, its complex value (purple) will
point in a di�erent direction, and its projection magnitude will be
low.

Using this intuition, we de�ne our weighting function for the
candidate unit vectors to be the magnitude of the projection of
individual voxel values onto the �nal sum. Formally:

F8,9 =
ℜ{� 9 (E8 ) }ℜ{( (E8 ) } + ℑ{� 9 (E8 ) }ℑ{( (E8 ) }

| |( (E8 ) | |
(6)

where ℜ{·} and ℑ{·} are the real and imaginary components of a

complex number, respectively.
We can then use this weighting function to compute the �nal

normal estimate, as described previously, using Eqs. 1- 3.
Finally, we repeat this process for each voxel to estimate the full

surface normal vector �eld. Fig. 7 shows an example of mmNorm’s
estimated normal �eld (as pink arrows) for the simulated scene we
presented earlier (in Fig. 4a). 7 Here, the direction of the estimated
vectors closely match the object’s curvature, showing the success
of our proposed approach.

A few additional points are worth noting:

Generalizing to Non-Specular Re�ections:While our explanation thus
far has relied on the fact that surfaces exhibit primarily specular
re�ections, our method still applies to cases with some level of
di�use scattering. For mmWave frequencies, di�use re�ections
frommany surfaces can be modeled with the directive model [4, 50],
where the re�ection power is symmetric around the specular angle,
but spread across a range of angles. This model applies to many
common materials spanning concrete, drywall, and marble [4, 50].
When the re�ected power is symmetric around the specular angle,
two weighted candidate vectors on opposite sides of the surface
normal will still sum to the direction of the normal. For example,
in Fig. 5b, the two red vectors sum to the direction of the object’s
normal. This allows directive di�use re�ections to further reinforce
our normal estimate.

Behavior of Weighting Function: For radar locations which are not
in the direction of the surface normal (e.g., the green & purple radar
locations in Fig. 5b), the projection magnitudes are not always low.
At �rst glance, this might appear to be an issue, since the large
projection magnitudes would result in strongly weighted (and in-
correct) candidate vectors, which one would expect to distort the
�nal normal estimate. However, it can be shown that the projection
magnitudes for radar locations far from the normal direction os-
cillate, producing both positive and negative weights. This causes
these weighted candidate vectors to point in opposite directions.
Thus, they cancel when summed together, preventing these radar
locations from in�uencing the �nal normal estimate.

Non-Uniform Object Properties: At �rst glance, it may appear that
mmNorm requires the object to exhibit uniform properties (e.g.,
material, re�ection power, etc) across the object surface. However,
this is not the case. It is important to note that mmNorm is not
solving the problem, “for a given radar location, which point on
the surface produces the strongest re�ection?", but the inverse,
“For a given point on the surface, which radar location receives
the strongest re�ection?" For example, in Fig. 5, we compare the
response at a single point on the surface (the brown voxel) across
all radar locations. Thus, relative changes across the surface of the
object have minimal impact. We demonstrate mmNorm’s ability to
reconstruct objects with variable properties (e.g., multiple materials)
in §6.

3 mmWave Normal Field Inversion
Now that we have described mmNorm’s approach to estimating
a surface normal �eld we can move on to inverting this �eld to
recover the surface.
7We only show the portion of the estimated vector �eld which lies within the high-
power (red) region of the mmWave image, since other locations su�er poor signal-to-
noise ratio and thus poor normal estimation accuracy.
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Figure 8: Surface Ambiguity. The vector �eld (green arrows) for a ground-truth
surface (black) can represent multiple surfaces (red & purple).

3.1 The Surface Ambiguity Problem
Typically, one can convert an object’s surface normals to the object
shape by �nding the surface that is perpendicular to every normal
vector. However, when given a normal vector �eld, there are multi-
ple such surfaces. We show this through an example in Fig. 8. Here,
we show a ground-truth surface in black, and its normal vector
�eld as green arrows. Based on this visualization, it becomes clear
that we can construct multiple possible surfaces for this vector
�eld, such as the two examples in red and purple. Each of these
surfaces is perpendicular to the normal vectors within this �eld,
and is therefore a valid possible surface.

3.2 Relative Signed Distance Function
To address this, our idea is to generate an implicit function capturing
all possible surfaces, and in §4 we will describe how we optimize
across this function to �nd the �nal surface.

To capture the object’s shape, we design an implicit function sim-
ilar to a signed distance function (SDF) from the computer graphics
and vision community [66]. An SDF is a 3D function which de�nes,
at each point in space, the distance from this point to the nearest
point on the object’s surface. Typically, an SDF is zero on the ob-
ject’s surface, positive outside the surface, and negative inside the
surface.

In our case, since we cannot identify the object’s surface directly,
we cannot �nd the exact SDF. Instead, we de�ne a new implict
function called a Relative Signed Distance Function (RSDF), which
is an SDF that is o�set by an unknown constant. For example, Fig. 2d
shows an example of a 2D cross-section of an RSDF function as a
color gradient, where brighter green represents increasing values,
and brighter purple represents decreasing (negative) values.

Unlike a standard SDF, where the object’s surface is de�ned by
the zero level-set, the RSDF cannot be used to directly identify the
object’s surface. Instead, we will use the RSDF to de�ne all possible
ambiguous surfaces through its di�erent isosurfaces. An isosurface
is a 3D surface where a function is the same value across the whole
surface [66]. For example, Fig. 2d shows two example isosurface
cross-sections as white lines. For each of these lines, the color (and
therefore RSDF value) is constant across the whole line. Due to the
construction of the RSDF, this means that each isosurface is one
valid reconstruction for the given normal vector �eld.

To generate our RSDF, we rely on the fact that a normal vector
�eld is the gradient of the SDF [32]. Thus, we can generate an RSDF
via a surface integral over our vector �eld. This integral will be
o�set from the standard SDF, since we do not know where within
the integral the zero level-set is.

Next, we formalize how to compute this surface integral. We will
approximate the integral as a discrete summation, since our vector
�eld is de�ned along discrete voxels. To start we choose a voxel,
E0, to act as a starting point. We assign the RSDF at this voxel to
0, and will compute remaining RSDF values relative to this voxel.

Formally, the RSDF 5 ' at E0 is:

5 ' (E0 ) = 0 (7)

Next, to compute the RSDF value at another voxel E8 , we �rst �nd
a path of voxels from E0 to E8 . Then, we apply a discrete summation
along this path to �nd the RSDF at E8 .

5 ' (E8 ) =
∑

:∈%

(n̂k · dk ) + 5 ' (E0 ) (8)

where % is a path of voxels connecting E0 to E8 , and dk is the vector
along the path P, pointing from voxel E:−1 to E: .

8

Now, the absolute SDF, 5 , is a constant o�set, � , from 5 ' :

5 (E8 ) = 5 ' (E8 ) − � (9)

Now, all possible surfaces are captured as di�erent isosurfaces
within 5 ' (E8 ) (or 5 (E8 )). Furthermore, the problem of �nding the
correct surface can be reduced to �nding the proper o�set constant
� , and then taking the zero level-set of the �nal SDF as the object
surface estimate.

3.2.1 Dealing with Complex Surfaces. So far, our discussion has
focused on scenarios where the object exposes a single surface
curvature. For example, the top side of a box facing the mmWave
radar consists of one �at surface, while a cylinder exposes one
continuous, curved surface. However, many objects contain more
complex curvatures. For example, a spatula contains multiple sur-
face components: one rounded portion for the handle and one �at
portion for the �ipper.

This becomes a problem if we cannot capture the full normal
vector �eld connecting these di�erent surface components. For
example, recall from §2.1 that a synthetic aperture is only capable
of capturing re�ections from portions of the surface whose normal
vectors point within the aperture. Therefore, if there is a portion
of the spatula’s handle, for example, which has normals pointing
outside the aperture, there will be gaps within our estimated nor-
mal vector �eld. This creates a problem when recovering the full
surface, since the relative change in the surface within that missing
component will not be recovered. It also creates a discontinuity in
the normal vector �eld which is di�cult to invert.

To address this challenge, we leverage the original mmWave
image to identify di�erent captured portions of the object and
compute the RSDF for each independently. Here, it is important to
recall that the mmWave image, such as the one shown in Fig. 4, does
not have enough resolution for surface reconstruction, but often has
more than enough information to localize di�erent portions of the
objects. We realize the above approach by identifying contiguous
areas of the surface as areas of high re�ection power in the image.

We explain our method through an example in Fig. 9, which
contains results from a real-world, non-line-of-sight experiment
for di�erent stages our our method. Here, we consider 2D cross
section of a mug on its side with two separate surface components:
one large, curved surface for the cup, and one small surface for the
handle. Fig. 9a shows the ground-truth surface as a pink line, and
the initial mmWave image as a heatmap. As described previously,
the mmWave image does not capture the full object. This is shown
in the region circled in white, which appears dark blue in the image.
Our approach to overcome this is composed of three steps:

8We compute this with dynamic programming.
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Figure 9: Dealing with Complex Objects. For this example of mug, a) the mmWave image will not capture the entire surface. b) We separate the image into high-power
regions and c) �nd the connected components. d) We construct separate RSDFs for each component. e) mmNorm’s �nal reconstruction.

(1) First, we convert the mmWave image into a binary image. We
assign all voxels above a threshold to 1, and all voxels below
the threshold to 0. This can be seen in Fig. 9b, where the pur-
ple/yellow regions indicates 0/1. Here, there are two main yel-
low regions corresponding to the two di�erent surface portions
of the object. Formally,

< (E8 ) =

{

1 if |( (E8 ) | > g

0 else
(10)

where<(E8 ) is the binary image, and g is the threshold.9

(2) Next, we �nd connected components within the binary image.
This can be seen in Fig. 9c, where the blue and teal regions
indicate two di�erent components, which each correspond to
one portion of the object’s surface. To �nd these components,
we can leverage a standard breadth-�rst-search (BFS) [33].

(3) Finally, we compute a separate RSDF across each connected
component. The output from this step can be seen in Fig. 9d,
where the color gradients represent the RSDF components.
Lighter colors indicate larger values and darker colors indi-
cate smaller RSDF values.

When we apply the above approach, we will be left with multiple
di�erent unknown constants, one for each RSDF component. Then,
identifying the proper isosurfaces can be reduced to the problem
of �nding the vector of constants C = {�1, ...,�=, ...,�# }, and se-
lecting the zero-level set of each SDF component to estimate each
object surface component.

4 Structural Isosurface Optimization
To overcome the surface ambiguity problem, we are inspired by
work in the computer vision and graphics community on imaging
and rendering [32, 66], where the goal is to derive a 3D scene from
a 2D image. In these systems, rather than attempting to directly
solve the inverse problem (e.g., directly estimating the 3D scene),
they instead optimize the scene through di�erent forward models.
For example, they construct a 3D scene, simulate its 2D image, and
compare it to the target image. Then, they can iteratively update
the scene parameters until it properly matches the target image.

We adapt this technique to solve the mmWave isosurface ambi-
guity problem. Speci�cally, we construct di�erent isosurfaces from
each of our RSDF components. Then, we simulate the radar signal
which would be re�ected from each of the candidate isosurfaces,
and compare it to the actual received signals. Then, we select the
optimal isosurfaces as the ones whose simulated re�ections best
match the real-world received re�ections. Our approach follows
three key steps:

(1) To start, we simulate the received re�ections from a given set of
isosurfaces (e.g., one isosurface per RSDF component). We do so

9In our implementation, we select g with the Li thresholding algorithm [39].

by �rst using standard ray-tracing to �nd re�ection points along
the isosurface in each RSDF component [32]. Then, we apply a
standard free-space path loss simulation [72] to compute the
total received signal at a given radar location. Formally:

ℎ̂ 9 (C,C) =

#
∑

==1

∑

A ∈'= (�= )

1

3A (�= )
4− 92c3A (�= )/_C (11)

where ℎ̂ 9 (C,C) is the tth sample of the estimated time-domain

received signal from the jth radar location for the isosurfaces
de�ned by the constantsC.'= (�=) is the set of rays from the ray
tracing which intersect with the nth RSDF isosurface. 3A (�=) is
the round-trip distance along ray A . # is the number of RSDF
components.

(2) Next, we aim to evaluate how well these simulated signals
match the real-world received signals. To do so, we formulate
a cost function, !(�), which takes the di�erence between the
simulated and actual signals: 10

! (C) =

�
∑

9=1

| | |��) (ℎ̂ 9 (C,C) ) | − |��) (ℎ 9 (C ) ) | | | (12)

(3) Finally, we choose the isosurface with minimum cost:

Ĉ = argmin
C

! (C) (13)

where Ĉ is the constant de�ning our estimated isosurface.
We show an example output of our optimization method for the
real-world example from Fig. 9. Fig. 9e shows the �nal 3D surface
reconstruction determined through Eq. 13 (red), and the 3D ground-
truth (green) of a mug on its side. This example shows how our
optimization is able to select isosurfaces for each of the 2 RSDF
components to produce a reconstruction which closely matches the
ground truth.

One may wonder how this approach is able to successfully select
isosurfaces without simulating real-world factors such as noise,
surface re�ectivity, etc. The reason why is similar to why SAR or
antenna array systems work well using the same model without
incorporating such factors.

5 Implementation & Evaluation
Physical Setup: The physical setup, as shown in Fig. 1, includes
a UR5e robotic arm [63] with a wrist-mounted TI mmWave radar
(IWR1443Boost [3] and DCA1000EVM [2]), and a wrist-mounted
Intel Realsense depth camera (D415 [30]). The radar is connected
to a computer running Windows 10 pro, which captures the data
for processing. The robotic arm moves the radars over a 2D grid
to create a synthetic aperture above the object. The robot scans at
∼0.1 m/s. We note that this scanning speed is primarily limited by
the time synchronization between the radar and the robot, and can

10We choose to use the FFT, since there is a direct relationship between the FFT of an
FMCW signal and the distance to the isosurface [31]
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be improved in future, integrated systems. We move the radars in
an 60 cm × 45 cm grid (which is large enough to ensure that objects
are contained entirely within the aperture), with the target object
placed roughly in the center. Our aperture forms a dense grid with
∼ _/4 spacing between the measurements to prevent aliasing. Our
radar collects 512 samples from 77.5GHz-80.5GHz. It has a 6 dB
antenna �eld of view of 100° (horizontal) and 40° (elevation).11

Software: To produce mmWave images, we used a standard near-
�eld backprojection implementation [79] in CUDA.We implemented
the processing described in §2- §4 in Python/C++/CUDA on ma-
chines running Ubuntu 22.04 with Intel(R) Xeon(R) CPUs and
NVIDIA GeForce GTX 1080 GPUs. We compute each image with a
voxel size of 1 mm × 1 mm × 1 mm. We evaluate the isosurface op-
timization (Eq. 13) across isosurfaces sampled every _/2 ≈ 1.9 mm.
Computational Complexity: The computational complexity of
mmNorm’s normal estimation algorithm (§2) is $ (+ ×�), where
V is the number of voxels and A is the number of antennas. This is
similar to the standard backprojection algorithm [17], and is sim-
ilarly parallelizable. Our RSDF computation (§3) is implemented
using a breadth-�rst search, and thus has a runtime of $ (+ ). Fi-
nally, mmNorm’s isosurface optimization (§4) is computed with a
complexity of$ (� × � ×� × ' ×) ), where R is the number of rays
used in raytracing, and I is the number of candidate isosurfaces
for each RSDF component. The number of RSDF components, and
number of candidate isosurfaces per RSDF can be approximated as
scalars (typically <4 and <60, respectively). Thus, the complexity
of the optimization is dominated by $ (� × ' ×) ). This isosurface
optimization step is also highly parallelizable. 12

Evaluation Environment:We evaluated mmNorm in a multipath-
rich indoor o�ce setting, with tables, chairs, desks, etc. In our
experiments, there were people walking in the background, and
standard wireless interference (e.g., WiFi, Bluetooth, etc). For each
object, we ran experiments in line-of-sight and non-line-of-sight
(fully occluded by a layer of cardboard). The object is placed on
a surface ∼40cm below the aperture. To allow our evaluation to
focus only on target object reconstruction, weminimize background
re�ections by placing objects on styrofoam [1].
Object Selection: Our evaluation covered 61 di�erent everyday
objects from the MITO dataset [18], a mmWave dataset of everyday
objects for robotic manipulation. These objects span a wide diver-
sity, including complex objects with multiple surface components
(e.g., mug, spatula), composite materials (e.g., power drill, utensils),
sharp edges (e.g., knife, scissors), varied curvatures (e.g., �at box
vs marble), etc. Furthermore, our objects include a wide variety of
material types, including wood, metal, cardboard, multiple types of
plastic, rubber, foam, and glass.
Metrics: Point Error: This metric measures the error of a given
point within our reconstructions, by measuring the distance from
this point to its nearest neighbor in the ground-truth point cloud
(%� ). Formally, point error % (G8 , %� ) is:

% (G8 , %� ) = min
G6∈%�

| |G8 − G6 | | (14)

11In practice, this �eld of view may limit the recoverable surface normals. We note that
future systems can overcome this by using spotlight SAR to point the radar towards
the scene, avoiding potentially unrecoverable normals.
12In practice, we compute the cost over a limited number of antennas to minimize the
computation time. We remove all antenna locations which do not receive a su�ciently
strong re�ection from the scene, and randomly select 50 of the remaining locations.

where G8 & G6 are points in the reconstruction & ground-truth.
We aggregate this error across all points and experiments to

measure the overall reconstruction accuracy.
Relative Point Error. This metric measures the point error rela-

tive to the object’s size Formally, this is de�ned as the point error
normalized by the diameter of the object:

'% (G8 , %� , 3� ) =
% (G8 , %� )

3�
x100% (15)

where'% (G8 , %� , 3� ) is the relative point error, and3� is the longest
distance between two points on the object.

Shape Error (3D F-Score): We measure the similarity between the
reconstructed and ground-truth shapes with the standard 3D F-
Score [62], which balances precision (accuracy of predicted points)
and recall (coverage of ground truth points). A point is accurate if
it is within a threshold distance of the ground truth. Similarly, a
ground truth point is covered if it is within the threshold distance
of the reconstruction:

�( =

2 %' '�

%' + '�
, '� =

1

#�

#�
∑

9=1

13 (G9 ,%< )<g , %' =

1

#<

#<
∑

8=1

13 (G8 ,%� )<g

where �( , %', '�, denote F-Score, precision and recall respectively.
1 is an indicator variable. %< is the reconstructed point cloud. g is
the threshold distance.13 F-Score ranges from 0 to 1, with 1 denoting
a high-accuracy reconstruction.

To evaluate only the di�erence in shape, we break down the total
error into shape error and position error (see below). The shape
error is obtained after subtracting the estimated position error as a
single translation applied to all points in the reconstruction.

Position Error: We measure the vertical distance between the
ground truth and reconstructed point clouds. Formally, we take the
di�erence between the 80th percentile height in reconstruction and
the 80th percentile ground-truth height:

) (%<, %� ) = |pcntl({I8 |I8 ∈ %< }, 80) − pcntl({I 9 |I 9 ∈ %� }, 80) |

where I8 and I 9 are the z (height) coordinates of points within %<
and %� , respectively. pcntl(·, ·) is the percentile operator.
Cosine Similarity: To measure our estimated normal accuracy, we
use the cosine similarity [45] to measure the similarity between
two vectors. Here, 1 represents perfectly aligned vectors, and 0
represents perpendicular vectors. 14 Formally:

( (n̂i, nj ) = |n̂i · nj | / ( |n̂i | |nj | ) (16)

where n̂i and nj are the estimated and ground-truth normals.
Baselines: We implemented two state-of-the-art baselines.

Backprojection [19]:Our �rst baseline reconstructs a 3DmmWave
image of the object through standard backprojection imaging, and
then selects the voxels that exceeds a certain threshold relative to
the maximum image value. It uses the center of these voxels as
points to reconstruct a 3D point cloud of the object. We selected the
threshold which produces the highest median 3D F-Score across all
objects.

Interferometric [21]: This baseline iteratively produces 2D SAR

13In our implementation, g is 0.015m.
14Since a normal vector can point in two directions (into or out of the object), we
�ip ground-truth normals to match the nearest direction of the estimates– e.g., two
opposite vectors (180° apart) have a cosine similarity=1.
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Figure 10: Qualitative Evaluation from three di�erent NLOS experiments, visualized from an isometric and top view.
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Figure 11: Multi-Objects

images of the target with small bandwidths, then compares the
change in phase across frequency to derive the object’s depth. Since
this method only estimates changes in depth, and requires a refer-
ence point to provide absolute depth, we o�set the reconstruction
by the average height (depth) of the high-power regions in the
standard, 3D mmWave image.
Ground Truth: To obtain a ground-truth 3D reconstruction, we
used the Intel Realsense D415 [30] depth camera on the robot wrist
to capture a depth image from directly above the object.15 For
NLOS experiments, we �rst captured the depth image in line-of-
sight before placing the occlusion.16

6 Results
We report the results from 116 real-world experimental trials.

6.1 Qualitative Results
First, we provide qualitative performance results for mmNorm and
the baselines across three of the NLOS experiments.

Fig. 10 shows the qualitative results, including the RGB (1st row),
ground truth point cloud (2nd row), mmNorm’s reconstruction (3rd
row), the Backprojection baseline’s reconstruction (4th row), and the
Interferometric baseline’s reconstruction (5th row). The color of the
points denotes the x coordinate of that point. To ensure consistency,
all point clouds in a column are plotted from the same angle. We
show experiments for a mug, chips can, and power drill, visualized
from both an isometric and top view. We note the following:
• Let us �rst consider the chips can (middle). Looking at the iso-
metric view, we can see that mmNorm’s reconstructed surface
closely matches the ground truth in its curvature. In contrast, the

15For high optical specularity (e.g., a shiny spoon), the depth image may be noisy.
We align a ground-truth mesh (provided by the YCB [8] dataset, which the MITO
dataset builds on) to the depth image using Iterative Closest Point, and use the top
mesh surface as ground truth.
16A few experiments reconstructed the cardboard occlusion and the hidden object.
Since the occlusion is not in our ground-truth, we removed points above a set height,
corresponding to the occlusion (for mmNorm and the baselines).

Backprojection baseline vastly overestimates the voxels that cor-
respond to the surface to the extent that one cannot identify that
it is curved altogether. Furthermore, the Interferometric baseline
is very sparse, making it di�cult to delineate the surface.17 The
same can be seen in the isometric view of the mug, whereby
mmNorm succeeds in capturing the surface curvature, but both
of the baselines fail. These show how mmNorm signi�cantly
outperforms the baselines in surface reconstruction.

• Let us next consider the top view of the mug. Here, we can
see that both mmNorm and the Backprojection baseline closely
match the ground truth (with mmNorm slightly outperforming
the baseline). This is expected, since the synthetic aperture pro-
duces a high horizontal resolution, which allows for accurate
2D reconstruction in both mmNorm and the baselines. However,
when viewed from the side, the baseline will have points spread
across a large depth range due to the radar’s limited depth reso-
lution, while mmNorm achieves accurate 3D reconstruction. On
the other hand, the Interferometric baseline is again sparse.

• mmNorm can accurately reconstruct complex surfaces like the
mug and power drill. For example, it captures both the handle
and the curve of themug, which has complicated surface normals.
This shows the bene�t of mmNorm’s techniques for generating
reconstructions of objects with complex geometries.

• mmNorm also succeeds across various materials (metal, plastic,
cardboard, composite) and textures, as seen here.

6.1.1 Extension to Multiple Objects. Next, we demonstrate an ex-
tension of mmNorm for multiple objects. Here, we placed three

17Here, the Interferometric baseline is sparse since it applies a single threshold to
determinewhich voxels in the 2D image are considered within the object. The threshold
was selected to maximize the median & 90th percentile performance of the baseline.
However, since our evaluation covers a large diversity of objects, some objects are
under-thresholded and thus contain fewer points. In other cases, objects such as the
power drill do not appear sparse (but still exhibit poor 3D reconstruction). A similar
phenomenon can be observed in the Backprojection baseline.
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Figure 12: Performance Results. a) Shape, b) position, and c) relative point error for mmNorm (blue), Backprojection (green), and Interferometric (orange).

objects - a fork, knife, and spoon - in the environment. Fig. 11
shows results for mmNorm and the baselines. Here, mmNorm’s
reconstruction closely match the ground-truth curvatures, while
the baseline reconstructions contain signi�cant distortions. This
highlights mmNorm’s potential for more complicated scenarios
containing multiple objects.

6.2 Performance Results

6.2.1 Shape Error. To evaluate the shape error, we compute the 3D
F-Score (de�ned in §5) for mmNorm and the baselines.

Fig. 12a plots a CDF of the shape error for mmNorm (blue), the
Backprojection baseline (green), and the Interferometric baseline
(orange). The dashed lines show the 50th and 25th percentiles. Note:

• mmNorm achieves a median F-score of 96%, in contrast to only
72% and 78% for the Backprojection and Interferometric baselines.
This shows the bene�t of mmNorm’s techniques for enabling
accurate reconstructions.

• Similarly, we compare the 25th percentile performances. Since
larger F-Scores are better, the 25th percentile demonstrates the
robustness (or lack thereof) to challenging scenarios. mmNorm
acheives a 25th percentile of 84%, while the Backprojection and the
Interferometric baselines only achieve 60% and 49%, respectively.
This demonstrates the robustness of mmNorm’s techniques for
reconstructing high-accuracy shapes in challenging scenarios.

6.2.2 Position Error.We evaluate position error de�ned in §5.
Fig. 12b plots a CDF of the position error in meters for mmNorm

(blue), Backprojection (green), and Interferometric (orange). Dashed
lines show the 50th/90th percentiles. We note the following:

• The Backprojection and Interferometric baselines have a median
position error of 0.8 cm and 1.3 cm, respectively. mmNorm
achieves a median position error of 0.6 cm. Note that this position
error is in addition to the shape error. It shows that mmNorm
not only exceeds the shape accuracy of state-of-the-art base-
lines, but also matches the median position accuracy of the best
performing baseline.

• The baselines have a 90th percentile position error of 4.3 cm &
5.8 cm, compared to mmNorm’s 2.4 cm. Thus, mmNorm achieves
an almost 2x improvement in the 90th percentile over the base-
lines, showing the bene�t of its techniques for producing recon-
structions with accurate absolute depth.

6.2.3 Relative Point Error. Next, we measure the error of the indi-
vidual points relative to the object’s size by measuring the relative
point error (de�ned in §5).

Fig. 12c plots a CDF of the relative point error in log scale for
mmNorm (blue), Backprojection (green), and Interferometric (or-
ange). The dashed lines show what percentage of points within the
reconstructions achieve an error less than 5% of the object’s size. We

note that both baselines have only 44% of their points with an error
within 5% of the object’s size, in contrast to 85% for mmNorm. This
reinforces mmNorm’s signi�cant improvement over the baselines.

6.3 Microbenchmarks
We performed microbenchmark experiments to understand the
impact of various factors on mmNorm’s performance.

6.3.1 Surface Normal Vector Field Accuracy. Our �rst microbench-
mark evaluates the accuracy of mmNorm’s surface normal vector
�eld produced in §2. To do so, we produce ground-truth surface
normal vector �elds by: 1) aligning the ground-truth object mesh
(provided in the YCB dataset [8], which theMITO dataset [18] builds
on) with the camera’s depth image using ICP [5], 2) using the mesh
to produce a ground-truth, 3D SDF of the object [69], and 3) taking
the gradient of the SDF to produce the ground-truth normal vector
�eld [55, 66].18 For each normal estimated by mmNorm, we mea-
sure the cosine-similarity (see §5) between the ground-truth and
estimated normals. We aggregate across all normal estimates. 19

We compare this to the performance of normals that would
be produced using the reconstructions of the Backprojection and
Interferometric baselines. To do so, we use a standard point-cloud
normal estimation method [80] to estimate the normal vector for
each point in the baseline reconstructions. We then measure the
cosine-similarity for every normal. 20

Fig. 13 plots a CDF of the cosine-similarity for mmNorm (blue),
Backprojection (green), and Interferometric (orange). The dashed
lines show the 50th/25th percentile. We note that:
• mmNorm achieves a 50th and 25th percentile cosine-similarity
of 0.99 and 0.94, respectively. This demonstrates that mmNorm
is capable of producing high-accuracy normal vectors.

• In contrast, Backprojection achieves a 50th and 25th percentile
of 0.54 and 0.22, and Interferometric achieves only 0.66 and 0.36,
respectively. This shows that state-of-the-art approaches cannot
accurately estimate surface normals.

6.3.2 Benefit of Isosurface Optimization. Next, we evaluate the
bene�t of mmNorm’s isosurface optimization technique (per §4),
by comparing mmNorm’s performance with two partial implemen-
tations. These implementations still estimate normal vectors (§2)
and produce RSDF components (§3) in the same way. However,
they do not leverage the isosurface optimization. Instead, the �rst
partial implementation simply selects the isosurface in the center
(vertically) of each RSDF component. To do so, it selects the un-
known RSDF constant (�=) as the average of the maximum and
minimum RSDF values, as�= = (max(5 '= ) +min(5 '= )) / 2. The sec-
ond partial implementation selects an isosurface weighted by the

18We interpolate the ground-truth vector �eld to match mmNorm.
19For this microbenchmark, we remove objects with no valid mesh �le.
20Again, we interpolate the ground-truth normals at each point.
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mmWave SAR image magnitude. Speci�cally, we discretely sample
isosurfaces every _/2 ≈ 1.9 mm, and compute the total SAR image
magnitude across each isosurface. We then compute the average
isosurface weighted by the total SAR image power. Formally:

�= =

∑max(5 '= )

2=min(5 '= )
2F2

∑max(5 '= )

2=min(5 '= )
F2

, F2 =

∑

E8 ∈(5 '= −2=0)

|( (E8 ) |

whereF2 are the weighting values based on mmWave image.
Fig. 14 plots a CDF of the overall point error in log scale for

mmNorm (blue) , the partial implementation using the RSDF center
(red), and the partial implementation using weighted centers (pink).
The dashed lines show the median and 90th percentile. We note that
the partial implementation using RSDF centers achieves a median
and 90th percentile error of 1.6 cm and 3.3 cm, respectively, and the
partial implementation using weighted centers achieves 1.1 cm and
2.9 cm, respectively. In contrast, mmNorm achieves a roughly 3x
and 2.5x improvement, with a median and 90th percentile error of
0.4 cm and 1.2 cm.
6.3.3 Impact of Non-Line-of-Sight. Next, we evaluate how NLOS
impacts mmNorm by comparing the performance in LOS and NLOS
scenarios (when fully occluded by a layer of cardboard).

Fig. 15 plots a CDF of the overall point error in log scale for
mmNorm in LOS (blue) and NLOS (red). The dashed lines show the
median and 90th percentile. We note that in LOS, mmNorm achieves
a median and 90th percentile of 0.39 cm and 1.1 cm, respectively. In
NLOS conditions, mmNorm achieves a median and 90th percentile
error of 0.43 cm and 1.2 cm, respectively. This shows that mmNorm
is capable of producing high-accuracy reconstructions in NLOS,
with a neglibile performance di�erence compared to LOS. 21

7 Related Work
mmWave-based 3D Object Reconstruction. Previous research
in mmWave reconstruction falls in two main categories: �rst-prin-
ciples and machine learning based approaches.

Within �rst-principle-based methods, the most common ap-
proach involves applying ray-tracing based imaging algorithms
(e.g., range migration algorithm or backprojection) to generate
3D mmWave images. Then, this image is directly used for occu-
pancy detection (e.g., by selecting all voxels that exceed a power
threshold) [15, 19, 37, 38, 40, 52]. As shown in our results, mmNorm
signi�cantly outperforms this method (the Backprojection baseline)
when using commercially available bandwidth. In principle, one
could rely on signi�cantly larger bandwidth (≥10 GHz) to obtain
more accurate 3D object reconstructions [15, 23, 37, 38, 40, 52].

21Note that similar to any mmWave system, while the SNRwould decrease with thicker
occlusions, this can be o�set with higher transmit power.

However, such bandwidth is reserved only for government and
military use, making it unsuitable for commercial applications.

To overcome the bandwidth limitations, some works have pro-
posed interferometric methods, which rely primarily on the phase.
Existing approaches have only demonstrated imaging a handful of
metallic objects in anechoic chamber [20–23] and do not generalize
well. Indeed, our results show that mmNorm signi�cantly outper-
form the Interferometric baseline [21], which is a state-of-the-art
system in this space. Finally, mmNorm is also related to [81], which
leverages incoherent methods to estimate an object’s 2D surface
normals and perform coarse reconstruction. In contrast, mmNorm
develops coherent methods for 3D surface normal estimation and
object reconstruction, producing signi�cantly �ner reconstructions
of smaller-scale objects and features.

The second category utilizes machine learning to produce high
resolution reconstructions using a limited, commercially available
bandwidth. These works focus on a speci�c category (or limited
categories) of objects, and use advanced learning models to produce
reconstructions beyond the radar resolution. For example, there has
beenwork on reconstructing human bodies [9–12, 28, 35, 70, 75–78],
human faces [74], vehicles [24, 57–59, 61], and scene-level features
(e.g., walls, furniture, etc) [7, 14, 36, 42, 48, 54]. However, these
works are limited in that they can only produce 3D reconstruc-
tions for objects within their speci�c category. Also, enabling such
learning-based approaches requires exhaustive training data. In
contrast, mmNorm uses an entirely �rst-principles-based approach
for mmWave 3D object reconstruction (for objects orders of magni-
tude smaller than cars, humans, etc). Thus, mmNorm generalizes
to completely unseen objects and environments without requiring
exhaustive training data.
Surface Normal Characterization. Certain perception tasks re-
quire characterizing a surface using its normals. Past work has done
this by �rst reconstructing human or scene-level features using RF
signals, then estimating the normals (in a straightforward fashion
or using machine learning) [27, 36, 46, 70]. This is fundamentally
di�erent than mmNorm which estimates surface normals from �rst
principles, then uses them to reconstruct the surface with high ac-
curacy. Indeed, our §6.3.1 micro-benchmark shows that mmNorm
is >2.5x more accurate than such methods, which �rst reconstruct
the surface then use it to estimate normals.
Optical-based 3D Object Reconstruction. Optical-based 3D re-
construction has been extensively studied over the past decade,
with prior work leveraging LiDAR [56, 67, 71] or RGB [51, 60, 73]
scans of an object to produce 3D reconstructions. However, these
methods are limited to the line-of-sight and cannot reconstruct fully-
occluded objects (e.g., inside boxes, behind obstacles, or covered by
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Figure 16: Limitations. Examples of various limitations of mmNorm.

clutter). This is because they rely on visible light or near-infrared,
which cannot traverse through occlusions. In contrast, mmNorm
enables NLOS 3D reconstruction by leveraging mmWave signals,
which can traverse many everyday occlusions.

There have also been a small number of works that investigate
re�ecting light around the corner to reconstruct hidden objects [13,
26, 29, 34, 65]. However, this approach cannot reconstruct fully
occluded objects (e.g., within a closed box). Also, these works rely
on expensive equipment and/or high-powered lasers which are
unsafe for human exposure.

8 Limitations
We highlight few limitations and avenues to overcome them:
Metal Occlusions. Similar to existing mmWave imaging systems,
mmNorm cannot reconstruct objects hidden behind metal (or very
thick) occlusions.
Hollow Objects. In the case of a hollow (and non-metallic) object,
such as an empty cardboard box, the mmWave signals may traverse
through the object and the radar may receive re�ections from both
the top and bottom surfaces. However, since mmNorm only pro-
duces one isosurface per RSDF component, it cannot reconstruct
both surfaces. For example, in the �rst column of Fig. 16 we show
an RGB image, ground truth point cloud (green), and mmNorm’s
reconstruction (red) for an empty box. Here, mmNorm’s reconstruc-
tion does not align with the top (or bottom) of the box.

It would be interesting future work to extend mmNorm to detect
these scenarios and produce reconstructions for both the top and
bottom surfaces of narrow, hollow objects.
Limited Coverage. mmNorm inherits the existing coverage lim-
itation of synthetic aperture radar. Speci�cally, recall from §2.1
that a mmWave image is only able to capture portions of the sur-
face where the normal points within the aperture. This prevents
mmNorm from reconstructing the normals (and thus the surface)
for parts of the object where the normal points outside the aperture.
We show an example of a mini soccer ball in Fig. 16 (2nd col). Due
to the limited aperture, mmNorm is only able to reconstruct the top
portion of the object (where normals point within the aperture).

It would be interesting future work to investigate other aperture
lengths and shapes to improve the surface coverage of mmNorm,
as well as to leverage deep learning methods for completing an
object’s shape from a partial reconstruction.
Missing Object Transitions. In some cases, mmNorm is unable
to capture sharp transitions in the object’s shape. We show this
through an example of a mustard bottle in Fig. 16 (3rd col). While
the reconstruction closely matches at many points on the object, it
deviates at the bottle’s cap, as shown within the blue circle. This is
because mmNorm is unable to recover the surface normals corre-
sponding with the sharp transition of the object (due to the same
coverage problem described above). In many cases, this is overcome
by leveraging di�erent RSDF components to separate the di�erent

object surfaces. However, in this case, both the main body and
the cap are very close to each other. Thus, they are selected to be
within one RSDF component. This prevents mmNorm from sepa-
rately optimizing their isosurfaces, resulting in the reconstruction
error shown. It would be interesting future work to identify this
case (e.g., by detecting sharp changes in signal response or through
a mmWave segmentation network) and split the RSDF into separate
components so their isosurfaces can be optimized independently,
allowing for better reconstruction.
Internal Object Multipath: mmNorm’s normal estimates may be
impacted by multipath within an object. We believe it would be
interesting future work to investigate the impact of this phenom-
enon, and incorporate it into the normal estimation or isosurface
optimization to improve the object reconstruction.
Computational Complexity and Scanning Time: Finally, fu-
ture work can investigate avenues for enabling real-time scanning
and computation. First, we envision future work can leverage faster,
integrated scanners, similar to those used in mmWave airport scan-
ners which can scan a large aperture in a few seconds (despite using
a much larger bandwidth than our system which is not commer-
cially available). Second, since many steps of mmNorm’s algorithms
are highly parallelizable, mmNorm could bene�t from similar opti-
mizations to existing SAR image computations (e.g., GPU, hardware
acceleration, etc) [17, 49] to enable future real-time computation.

9 Conclusion & Future Opportunities
We presented mmNorm, a fundamentally new method for NLOS
3D object reconstruction via mmWave surface normal estimation,
opening future work along multiple dimensions.

For example, it would be interesting to investigate howmmNorm’s
methods may bring bene�t to larger objects or scene-level reconstruc-
tions. By leveraging surface normal estimates in these scenarios, it
may be possible to further enhance autonomous vehicle sensing or
RF-SLAM systems.

Also, we imagine that future work could enable camera-quality

NLOS reconstructions. Similar to how past work has enabled lidar-
quality scene reconstructions from long-range mmWave measure-
ments [36], we envision that one could leverage mmNorm’s re-
constructions as input to a deep learning model to produce photo-
realistic reconstructions.

Further, we believe mmNorm can enable novel downstream tasks

For example, we envision a new domain of NLOS robotic systems
which can directly locate and grasp objects which are hidden from
view (i.e., objects within boxes of packing peanuts or hidden in
dark locations). Furthermore, future work could investigate com-
bining arrays on AR headsets with human motion to reconstruct
surrounding objects and display high-resolution hidden models to
the user. Finally, high-accuracy reconstruction could enable new
capabilities in areas such as gesture recognition, NLOS quality con-
trol in shipping and logistics, and hidden object classi�cation and
completion.

More broadly, we hope that this work motivates a new direction
for high-accuracy, non-line-of-sight 3D reconstruction.
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