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Abstract—Locating RFID-tagged items in the environment and
guiding humans to retrieve the tagged items is an important
problem in the RFID community. This paper explores how to
exploit synergies between Augmented Reality (AR) headsets and
RFID localization to help solve this problem by improving both
user experience and localization accuracy. Using fundamental
mathematical formulations for RFID localization, we derive
confidence metrics and display guidance to the user to improve
their experience and enable them to retrieve items faster. We
build our primitives into an end-to-end system, RF-AR, and
show that it achieves 8.6 cm median localization accuracy within
76 seconds and enables 55% faster retrieval than state-of-
the-art past systems. Our results demonstrate that AR-based
“human-in-the-loop” designs can make the localization task more
accurate and efficient, and thus holds the potential to improve
processes where items need to be retrieved quickly, such as in
manufacturing, retail, and warehousing.

Index Terms—Augmented Reality, Virtual Reality, RFID Lo-
calization, User Interface, Human-in-the-loop, RF sensing

I. INTRODUCTION

Augmented Reality (AR) and Virtual Reality (VR) enhance

the interactions between humans and computers by offering an

effective user interface. For example, AR glasses can signif-

icantly streamline operations in logistics and warehousing by

visualizing the incoming customer orders and guiding the op-

erators in the environment. In manufacturing, AR/VR glasses

can display the next steps and tools to workers to improve

accuracy and efficiency. Because of this immense potential to

revolutionize the human-machine interface and the potential

applications in future industries, substantial investments have

been made in developing AR/VR headsets by governments

and big tech companies.

Current AR/VR headsets are equipped with various sen-

sors such as RGB and depth cameras, inertial sensors, and

microphone arrays. While these devices are capable of hand

tracking, mapping, and self-localization in their environment,

their perception is as limited as humans. For instance, in the

case of a store associate attempting to locate and retrieve a

specific package from a customer’s order, the AR/VR headset

is unable to locate the package, guide the wearer towards it,

or assist with the task unless there is a clear line of sight from

the headset cameras to the packages barcodes.

One approach to enable new capabilities for AR/VR head-

sets is to leverage Radio Frequency (RF) signals. Since RF sig-

nals can traverse boxes and walls, they extend the perception

beyond the line of sight. More specifically, RF sensing can be

utilized to identify and sense Radio Frequency Identification

(RFID) tagged items in the environment. Passive RFID tags

are around 3-5 cents and are widely used.

Past work exploring the combination of RF and AR tech-

nologies have designed the wireless localization and AR
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Fig. 1: RF-AR. RF-AR incorporates a dynamic RF-based user interface and
brings the user in the loop to locate RFID tagged items. It uses color coding
to communicate signal strength, projects an elliptical hologram to show the
region on interest for the tag, and displays an arrow to help the user optimize
their path to localize the target item.

system as separate entities. RF-AR, however, considers how

to synergistally combine the two to deliver new functionalities

to improve the RFID localization accuracy as well as the user

experience.

In this paper, we present RF-AR, an AR system that

seamlessly integrates RF perception and localization into the

user experience. Our system introduces a new “human-in-the-

loop” design and provides a dynamic RF-based user interface

to help users efficiently and accurately localize hidden RFID

tags in the environment. Particularly, RF measurements from

different locations are required to locate target RFID tags, and

it is especially critical to achieve proper measurement aperture

for accurate and quick tag localization [1]–[3]. However, it

is quite complicated for a typical AR user to optimize their

path or measurement aperture without prior knowledge of

the target item’s location and a complete understanding of

RF measurements and localization techniques. Thus, the key

challenge is integrating RF perception into a user-centered

design such that we abstract away all the technical details but

still provide meaningful information that can be understood

by a user with no RF knowledge.

To overcome these challenges, RF-AR introduces two main

innovations:

• Path Optimization: RF-AR predicts the quality of RFID

measurements in potential trajectories, determines the optimal

one, and directs the user along that path, as shown in Fig. 1.

RF-AR creates a candidate list of next possible locations

for a user to walk to. For every candidate location, RF-AR

considers: 1) the reduction in Dilution of Precision (DoP)

[4] that a measurement taken at that location would yield,

2) the distance to the estimated target item location, and 3)

the expected Signal-to-Noise Ratio (SNR).

• Dynamic RF-based User Interface: RF-AR introduces

a dynamic RF-based user interface that provides essential RF



information while abstracting away the complicated technical

details. RF-AR employs simple visualizations to provide seam-

less feedback to the user in a way that biases their trajectories

toward the tag location, and brings them in the loop for

localizing RFID tagged objects as shown in Fig. 1.

RF-AR explores multiple user interface implementations

of varying levels of complexity to determine whether more

sophisticated and involved displays better assist the user. To

do this, RF-AR tests combinations of different prompts:

1) Color coding to communicate to the user whether they are

successfully receiving RF measurement with an acceptable

SNR

2) Visualizing a hologram to picture the region of confidence

around the estimated location of the target item

3) Guiding the user with an arrow to follow the optimized

trajectory

We implemented an end-to-end prototype of RF-AR, tested

our system on 20 users1, and evaluated its performance in

80 trials. Using our system, users were able to locate the

hidden RFID tagged target items with 8.6 cm accuracy within

a median of 76 sec. We also compared our performance to a

baseline [2], showing that with the baseline, it takes users 55%

longer (118 sec) to locate the RFID tag compared to RF-AR.

II. RELATED WORK

Prior work that fuses RF and AR have designed RF sensing

modules as separate entities and either completely keep the

user out of the loop or fail to create a sophisticated system to

optimize their task. For example, existing RFID-AR systems

leverage their “AR” smart phones or separate monitors for the

sole purpose of visualizing primitive displays of tagged items

in the environment [5]–[9]. Other work providing information

to users via glasses or headsets for non RFID localization tasks

such as assembly, picking or walking either provides no visual

display to the user [10], needs pre-prepared infrastructure [11],

or cannot actively guide the user but rather confirm correct

action following task completion [7].

More, recent work has explored enabling RFID sensing on

an AR headset by leveraging a custom designed antenna and

natural human motion to localize RFID tags [2]. Practically,

this system, called X-AR, has minimal interaction with the

user and reduces them to mere headset carriers, which fails

to recognize the purpose of AR devices to incorporate users

as active participants within the system, rather than passive

carriers of the device, similar to a hand-held RFID reader.

III. PRIMER: WIDEBAND SAR LOCALIZATION

Synthetic Aperture Radar (SAR) is a technique for local-

ization and imaging. In contrast to standard antenna arrays,

SAR relies on a single antenna moved to multiple locations

to collect measurements and emulate an antenna array. To

carry out SAR, RF-AR leverages an antenna mounted on the

AR headset and captures measurements as the user walks

throughout the environment. The location of the antenna is

1This study was approved by the institution’s IRB.

estimated by the visual-inertial odometry (VIO) system of the

AR headset. When a passive RFID tag powers up and responds

with its identifiers, RF-AR uses this response to estimate the

wireless channel h(t) as h =
∑

t y(t)x
∗(t) where x∗(t) is

the conjugate of the transmitted signal x(t), and y(t) is the

received signal.

We can then estimate the power P received from every point

in space based on the estimated wireless channel using the

following equation. It is worth noting that RF-AR exploits

frequency diversity by taking measurements over a wideband

of frequencies to improve the localization accuracy. Formally:

P (x, y, z) =
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where N is the total number of measurements, K is the total

number of frequencies, hi,j is the channel estimation of the ith

location with the jth frequency, di is the round trip distance

from (x, y, z) to the ith location, and λj is the wavelength

of jth frequency. Finally, the location of the tag, ptag can be

determined using the following formula:

ptag = argmax(x,y,z)(P (x, y, z)) (2)

IV. PATH OPTIMIZATION

In this section, we describe RF-AR’s approach for path

optimization. Remember that RF-AR’s goal is to optimize

RFID localization by bringing the user into the loop. As

a first step, RF-AR has to determine what would be the

optimal trajectory for the user. To do this, every time RF-AR

receives a new RF measurement, it creates a list possible

next locations for a user to walk to. It predicts the quality

of an RF measurements at each candidate location, and then

directs the user towards the best location with a holographic

arrow. To estimate the quality of an RF measurement for target

item localization, RF-AR analyzes multiple factors: 1) DoP, 2)

SNR, and 3) distance to the estimated target location. In this

section, we elaborate on each factor separately.

A. Dilution of Precision

To improve the accuracy of RFID tag localization, RF

measurements should be taken over a wide aperture. This is

because each RF measurement inherently suffers from some

level of error. When combining multiple RF measurements as

explained in §III, these errors can accumulate and significantly

increase the localization error. This phenomenon is called

DoP [4]. When RF measurements are taken over a wider

aperture, the DoP will be smaller, meaning that the effect of

small errors in each RF measurement on the final localization

accuracy will be less significant.

Formally, we can calculate the DoP value based on RF

measurement positions as follows:
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tr(Q) (4)

where (xi, yi, zi) correspond to the location of the antenna at

time i, (xp, yp, zp) is the estimated target RFID tag location

calculated from the collected RF measurements described in

§III, Ri is the distance from (xi, yi, zi) to (xp, yp, zp), and

tr(.) is the trace of matrix.

RF-AR uses the DoP as a metric to evaluate the potential

of a measurement taken at a given position to aid in localizing

the tag. First, to determine a position for consideration, RF-AR

uses information regarding the speed the user is walking at to

estimate the location of the user at time t. For example, if the

user is at a current location p⃗c = (xc, yc, zc) while moving at

the speed v in direction θc, the future measurement position

p⃗f after a period time ta can be estimated as:

r⃗(θc, v, ta) = [vta cos(θc), vta sin(θc), 0] (5)

p⃗f (θc, v, ta) = p⃗c + r⃗(θc, v, ta) (6)

At the position p⃗c, RF-AR calculates how much the DoP

would change if the user moves to p⃗f . The improvement in

DoP can be described by the function C1(θc, v, ta) defined as:

C1(θc, v, ta) = DOP{p⃗1,p⃗2,. . . ,p⃗c,p⃗f} −DOP{p⃗1,p⃗2,. . . ,p⃗c} (7)

where {p⃗1, p⃗2, . . . , p⃗c} are past measurement positions and pf
is the candidate future measurement position.

B. SNR

Another important metric for evaluating the quality of RF

measurements is SNR. Without sufficient SNR, an RF mea-

surement is not able to accurately estimate the wireless channel

and help determine the location of the RFID tag as detailed in

Sec. §III. A measurements’ SNR can be influenced by multiple

factors, including the distance and angular separation between

the antenna and the target RFID tag, the antenna’s radiation

pattern and gain, and environmental noise and interference.

Since the environmental multipath and noise is hard to predict

and the antenna gain does not change, in this subsection, we

focus on estimating the quality of SNR at a candidate position

by considering the angular separation between the user and the

estimated location of the RFID tag. It is important to note that

we assume a user is looking in the direction they are walking.

Recall that RF-AR has an antenna on its headset’s visor.

As shown in Fig. 2a, if an RFID tag is in front of the headset

and within the field of view of antenna, the RF measurement

should have good SNR. However, as shown in Fig. 2b, if an

RFID tag is outside the field of view of the antenna, RF-AR

cannot obtain an RF measurement with acceptable SNRs.

RF-AR takes this understanding into account when estimating

the quality of future RF measurements.

First, RF-AR calculates the angle ψ between the direction

normal to the headset visor and its estimate of the target RFID

location as:
r⃗h(θc) = [cos(θc), sin(θc), 0] (8)

r⃗tg = p⃗tg − p⃗c (9)

ψ(θc) = cos−1 r⃗tg · r⃗h(θc)

∥r⃗tg∥∥r⃗h(θc)∥
(10)

where r⃗h is the heading vector of the user walking in direction

θc, and r⃗tg is the vector from the current user location to the
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Fig. 2: Varied RFID Tag and AR headset Configurations.

estimated location. Based on ψ, RF-AR estimates the quality

of SNR and scores it as follows:

C2(θc) = | sin(ψ(θc))|, ψ ∈ [−
π

2
,
π

2
] (11)

where C2 is the estimate quality of RF measurement SNR.

C. Distance to the target

An important factor that impacts the efficiency of finding

hidden objects is the distance the users have to walk. Thus,

RF-AR evaluates the quality of future RF measurement loca-

tions by also considering their distance to the target location.

Specifically, the distance component of measurement quality

can be formulated as:

C3(θc, v, ta) = ||p⃗tg − p⃗f || (12)

where p⃗tg is the RF-AR’s estimated location of the target RFID

tag and p⃗f is the future measurement position as described in

Eq.6.

D. Total Cost function

Ultimately, RF-AR incorporates all the factors mentioned

above to decide on optimal candidate location to guide the

user to. In practice, RF-AR samples θc from a discrete set

of angles Sθ, and calculates the candidate RF measurement

locations usiing to Eq. 6. To find the optimal guided direction

θ∗c , RF-AR minimizes the following cost function:

θ
∗
c = argmin

θc
C1(θc, v, ta) + C2(θc) + C3(θc, v, ta) (13)

Based on the found θ∗c , RF-AR then guides users towards the

optimal path using a holographic arrow as we explain in the

following section.

V. RF-BASED DYNAMIC USER INTERFACE

In the previous sections, we summarized the SAR

techniques for localization and described our path optimization

algorithm. In this section, we describe how our system

translates these concepts and creates an interactive and

dynamic user display for optimized RFID localization.

Our goal is to create visual cues and holographic prompts

that abstract away all the technical detail of RF measurements

while still enabling the user to efficiently find hidden RFID

tagged objects. Specifically, our focus is on providing the

user with actionable prompts that reduce the overall time and

distance traveled needed for RFID localization. Our design

explores various RF-based user interfaces of varying degrees

of sophistication. We describe the components of the user

interfaces below.



(a) SNR Cue (b) Displaying Confidence (c) Arrow Directing Users

Fig. 3: RF-based Dynamic User Interface. (a) Examples of SNR visual cues given to the users. The system displays a blue color prompt to the user when
the SNR is greater than µ, and changes the color to red when the SNR is smaller than µ. (b) A holographic ellipsoid communicates the current estimated
location and its confidence to the user (c) An arrow that shows the direction to the next optimal location suggested by RF-AR’s path optimization algorithm.

A. SNR Cue

Our system’s first visual cue exploits the SNR to create

an indicator for the user. As previously mentioned, low SNR

prevents proper estimation of the wireless channel. Recall from

§III that for each measurement, RF-AR performs multiple

channel estimations over 200 MHz of bandwidth and then

averages the result. Thus, we assume that a low average SNR

at a position is not the result of environmental interference

(which is unlikely to manifest at all frequencies), but rather

the result of the user (and the visor-mounted antenna) facing

a direction where the tag is not located.

By communicating the SNR status through a color-coded

floating widget, as in Figure 3a, users can rule out possible

tag locations and position themselves to optimize channel

measurements. If the SNR is larger than µ, the system shows

the user blue color, whereas if the SNR is smaller than µ, it

shows the user red color for warning. We select µ such that

RF measurements above the threshold2 provide useful channel

information. This simple and intuitive system enables users to

quickly and easily identify areas with optimal RFID signal

quality, allowing for efficient and accurate tag localization.

B. Displaying Confidence

In our AR application, we also visualize the concept of

confidence in the estimated location of the RFID. Recall that

SAR computes the power at each location in space based on Eq

1. To quantify the confidence of SAR in correctly determining

the peak power location (corresponding to the target RFID),

we select (x, y, z) points in space where the calculated power

falls within 0.75dB of the peak power. We then extract the

maximum distance along the x,y,z dimension for the selected

points. When the area of these points is very large, it shows

that SAR has not been able to narrow down the location of the

RFID tag with reasonable confidence. Since these points tend

to cluster into a 3D ellipse shape around the peak power, we

display to the user a holographic ellipsoid fit to the extracted

x,y,z axis, which is shown as the transparent blue ellipsoid in

Fig. 3b. We model the ellipsoid in the AR display using the

standard equations for Cartesian coordinate systems:
x2

a2
+
y2

b2
+
z2

c2
= 1 (14)

where a, b and c are the lengths of the semi-axis of the

ellipsoid that correspond to the extracted axis dimensions.

As the confidence interval size updates with the addition of

new measurements, the holograph of the ellipsoid updates as

2In our implementation, we chose this threshold µ = 4dB.

well. The RFID tag is considered confidently localized when

the axis dimensions of the ellipsoid fall below (τx, τy, τz)
3,

corresponding to a strong confidence in the predicted location

similar to past work [2].

C. Directing Users to Optimal Path

Section §IV describes how we select the optimal next loca-

tion for a measurement to increase the accuracy and efficiency

of RFID localization. In order to direct users to this location,

we display a blue arrow right above the floating canvas, as

seen in Fig. 3c. This arrow updates every frame to ensure that

it is always pointing the user in the correct direction as the user

moves and walks through the space. The arrow also updates its

pointing direction when new directions from path optimization

are sent. The pointing vector of the arrow is calculated every

frame as q⃗ =< xn−xh, yn−yh, zn−zh > where (xh, yh, zh)
are the coordinates just above the holographic floating canvas

(base of the arrow) and (xn, yn, zn) is the location that the

system guides the user to, which is formulated as p⃗n(θ
∗

c , v, ta)
and is defined in Eq. 6. To make sure that the arrow does not

point in an angled upward or downward direction that would

confuse users, we set zh equal to the height of the user’s head,

which is estimated by the VIO self-tracking of the AR device.

VI. IMPLEMENTATION

We programmed a custom application using Unity3D to

display all user interfaces detailed in §V. Front end application

graphics were designed in Figma and Adobe and then im-

ported to Unity3D. Scripts to support application functionality

were written in C# in Visual Studio IDE. We deployed our

application on a Microsoft Hololens 2. We used the same

antenna and hardware setup as [2] using BladeRFs, Raspberry

Pi, and power splitters. We tested our device using standard

off-the-shelf UHF RFID tags placed in cardboard boxes at

different locations. We implemented all processing outlined in

§III in C++ and python on the edge server which is an Ubuntu

20.04 machine with an Intel(R) Core(TM) i9-10900X CPU @

3.70GHz. We implement code in Python on the Rasberry Pi

to stream RFID channel measurements from BladeRFs to the

edge server. The AR headset’s UI then updates according to

the received messages from the edge server.

VII. EVALUATION

We evaluated RF-AR in an indoor environment that mimics

a warehouse. Figure 1 shows our evaluation environment,

which includes a number of stacked boxes. We recruited 20

participants (14 males and 6 females, aged 22-34 years old)

3In our implementation, we chose (τx, τy , τz) = (0.12, 0.14, 0.27)



who did not have prior knowledge of the details of RF-AR’s

implementation, techniques, or the environment setup. In all

of our experimental trials, the subjects were tasked to use the

headset to find fully occluded RFID tagged items that were

hidden in different locations. We evaluated multiple versions

of RF-AR with varied degrees of user interface complexity

against a baseline(XAR).

• Baseline(XAR): Similar to past work [2]. No feedback is

provided to the user until the target RFID is located

• RF-AR (SNR): Provides color cues based on RF measure-

ments as described in §V-A

• RF-AR (ConfSNR): Provides both SNR-based color cues

and the confidence-based ellipsoid hologram as described in

§V-A, and §V-B

• RF-AR (ArrowConf): Highest degree of complexity in user

interface. Optimizes users’ trajectory through visualizing ar-

rows, as described in §V-C, as well as color cues and ellipsoid

hologram

We randomized the order of baseline and RF-AR implemen-

tations when we asked each subject to use the headset.

Metrics: We evaluated RF-AR performance through four main

metrics: 1) Localization error is the error between the target

RFID tag ground truth location and the the headset’s estimated

location of the target RFID. 2) Time is the duration that the

user spent searching from when they started the experiment

until when the system found the target RFID tag confidently.

3) Success Rate is the rate that headset was able to locate the

target RFID tag within 300 seconds and with less than 25 cm

of localization L2 norm error. 4) Traveled Distance is the

distance traveled by the user from the starting point until the

RFID tagged item is confidently located.

Ground Truth: The investigators, who knew where the target

RFID tags were hidden, dragged and aligned a holographic

spheres in the Hololens App onto the target RFID tag location

and sent the location to the edge server. The holographic

spheres were removed before the headset was given to the

subjects to ensure the RFID locations are unknown to subjects.

VIII. RESULTS

We conducted 80 trials with 20 users to evaluate the impact

of RF-AR’s RF-based dynamic user interface and path opti-

mization on the efficiency and accuracy of RFID localization.

A. Time Efficiency and Localization accuracy

We first analyze localization error as a function of the time

it takes users to localize a target RFID tagged item. Fig.4a

plots the median of L2 norm localization error against the

median time that the users spent searching for the item over all

trials. The red dot demonstrates the result for Baseline(XAR),

pink dot shows RF-AR (SNR), and blue and green dots show

RF-AR (ConfSNR) and RF-AR (ArrowConf), respectively. As

shown in Fig.4a, Baseline(XAR) achieves a median local-

ization error of 9.9 cm within a median time of 118 sec.

RF-AR (SNR), RF-AR (ConfSNR) and RF-AR (ArrowConf)

achieve median localization errors of 10.0 cm, 9.4 cm and

8.6 cm, and a median time of 36 sec, 58 sec, and 76 sec,

respectively. We make the following remarks:
• All three versions of our system outperform the baseline

in the median time. This proves that at a fundamental level,

adding the“human-in-the-loop” is the key driver for perfor-

mance improvements (reducing the time needed for localizing

fully occluded RFID tagged targets) and delivers meaningful

advantage over prior art.

• For the three versions of RF-AR, as the complexity of

the user interface increased the median localization error de-

creased. These results demonstrate that increasing the UI cues

and interface sophistication successfully influence the user’s

trajectory and resulted in higher quality RF measurement and

improved localization accuracy.

• For the three versions of RF-AR, as the complexity of

the user interface increased, the median time for localiza-

tion increased. This demonstrates that while all variations

of our design outperform the baseline in time, increasing

the complexity of the user interface makes it slightly more

time consuming for the users. This could be because more

sophisticated prompts require longer reaction times from the

general AR user.

For every user interface, we also independently analyzed

the localization error, as shown in Fig.4b. The bars show the

localization L2 norm error, and the error lines demonstrate the

10th and 90th percentile. In addition, we further analyze the

time it takes users to finish the task in Fig. 4c, where bars

show the median task times and error lines again indicate the

10th and 90th percentiles for each UI. Based on these two

figures, we make the following remarks:

• Because Baseline(XAR) does not provide any feedback to

the user, the 90th percentile of convergence time is 280 sec or

approximately 4.6 minutes, which is over 2x the median time

(118 sec). This clearly shows that not delivering any prompt

to the user adversely affects the efficiency and reliability of

the system.

• While RF-AR (SNR) has the lowest median time to finish

the tasks (40 sec), its 90th percentile is 131 sec and is

higher than the 90th percentile of the more sophisticated

RF-AR (ConfSNR) and RF-AR (ArrowConf), which are 95 sec

and 121 sec respectively. This demonstrates that RF-AR (SNR)

is less reliable in improving the efficiency and accuracy of

RFID tagged items’ localization.

• More sophisticated user interfaces, RF-AR (ConfSNR) and

RF-AR (ArrowConf), achieved 90th percentile localization er-

ror of 13.3cm and 14.6cm. While our simplest user interface,

RF-AR (SNR), and the baseline have a 90th percentile lo-

calization error of 16.4cm. This demonstrates that although

RF-AR (SNR) had a better median task time than more so-

phisticate version of RF-AR, it has less reliable localization

accuracy in 90th percentile.

B. Success Rate

We define a trial to be a success when the localization

error and time to find the item are below 25 cm and 300

seconds, respectively. We expect that an error above 25 cm
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Fig. 4: Evaluation Results.(a) The plot shows the median L2-norm localization error and median task duration for X-AR (Baseline) in red, RF-AR (SNR)
in pink, RF-AR (ConfSNR) in blue, and RF-AR (ArrowConf) in green. (b) The bar graph displays the median L2-norm localization error (c) The bar graph
shows the median time that users took to complete the task (d) The bar graph shows the median distance that users traveled to complete the task. All error
bars represent the 10th and 90th percentiles of the respective metrics.

would be insufficient granularity to distinguish between boxes

on shelves. We also note that for trials lasting over 300 sec (5

min) users became discouraged to search. Table I reports the

success rate for each UI over all trials. We note the following:

• Baseline(XAR) failed in 10% of the trials. All failures

were due to users not finding the RFID tagged target item in

time. This shows that the lack of user guidance can result in

long search times that reduce the efficiency and user appeal

of the system.

• RF-AR (SNR) also fails 10% of the trials. These failures

were due to an instance of large localization error and an in-

stance of long search time. This demonstrates that minimizing

the cues to the user results in a higher likelihood of failure.

Methods Baseline RF-AR RF-AR RF-AR

(XAR) (SNR) (ConfSNR) (ArrowConf)

Success Rate 90% 90% 100% 100%

TABLE I: User Interface imapact on Success Rate

C. Traveled Distance

We also evaluated the total distance the user has to travel

(walk) from their starting position until they locate the hidden

RFID tagged item. Fig.4d shows the users’ traveled distance

for each type of user interface. The bars show the median

travel distance and the error lines demonstrate the 10th and

90th percentile. We make the following remarks:

• Baseline(XAR) needed a median of 32.22 m traveled

distance to locate the RFID tagged item. This is significantly

longer than other user interfaces. This proves that providing

the user with real-time feedback based on the quality of

RFID measurements greatly reduces the amount of walking

or searching needed from the user.

• RF-AR (ArrowConf) required a median of 14.61 m trav-

eled distance while RF-AR (SNR) and RF-AR (ConfSNR)

needed 11.12 m and 12.40 m, respectively. The addition of the

guiding arrow for DOP optimization in RF-AR (ArrowConf)

results in a slight increase in the traveled distance. We believe

that this is due to the arrow guiding the user to new locations

to improve the confidence of the system and reduce the DoP

to get lower the localization error.

IX. CONCLUSION

There have been a huge investments in AR/VR devices

that show the potential to transform the way humans and

technology interact. In this paper, we present a system that

seamlessly integrates RF sensing with AR to enable users to

find fully occluded RFID tagged items. We introduce a novel

“human-in-the-loop” design that considers path optimization

and presents a dynamic RF-based user interface. Our results

show the potential of our human-centered design to improve

the accuracy and efficiency of RFID localization for fast item

retrieval, an application with important implications in sectors

such as manufacturing, retail, and warehousing. In future

implementations of RF-AR, the entire RF sensing hardware

can be integrated into the AR headset.4 As the research

evolves, we envision future designs to explore new ways to

synergistically combine wireless sensing and AR, and we hope

that our work inspires further research in this space.
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