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ABSTRACT

We present the design, implementation, and evaluation of

RFlect, a mmWave imaging system capable of producing

around-the-corner high-resolution images in practical en-

vironments. RFlect leverages signals re�ected o� complex

surfaces (e.g., poles, concave surfaces, or composition of

multiple surfaces) to image objects that are not in the RF

line-of-sight. RFlect models the re�ections and introduces

reconstruction algorithms for di�erent types of surfaces. It

also leverages a novel method for precisely mapping the lo-

cation and geometry of the re�ecting surface. We also derive

the theoretical resolution and coverage for di�erent re�ect-

ing surface geometries. We built a prototype of RFlect and

performed extensive evaluations to demonstrate its ability to

reconstruct the shape of objects around the corner, with an

average Chamfer Distance of 2cm and 3D F-Score of 88.6%.
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Figure 1: RFlect. is capable to leverage re�ections o� surrounding surfaces

like a pole to produce images of NLOS objects around a corner.

1 INTRODUCTION
In this paper, we explore the problem of non-line-of-sight

(NLOS) imaging, speci�cally producing high-resolution images

of objects around the corner. The ability to image objects

that are hidden from view around corners and obstacles has

several applications. Autonomous vehicles would be able

to detect tra�c approaching an intersection while hidden

behind the corner of a building, allowing them to plan ac-

cordingly and avoid collisions. Similarly, an autonomous

robot navigating in a factory, warehouse, or restaurant can

sense other robots or humans around the corner. In disaster

response scenarios, the ability to see around occlusions can

allow response teams to e�ciently search collapsed buildings

and rubble for survivors.

However, NLOS imaging in practical environments is cur-

rently not feasible. The majority of conventional imaging

modalities, such as cameras and LiDARs, require targets to

be in line-of-sight (LOS). One solution is to install a mirror

at the corner. However, this requires augmenting the envi-

ronment at every corner and is therefore not scalable. On

the other hand, there has been signi�cant research on using

radio-frequency (RF) signals to see through walls [1, 7, 12, 17,

29, 57]. However, RF signals su�er severe attenuation when

they traverse through walls and cannot traverse all types of

thick walls especially given that they need to pass through

two walls two times to get to the object and back, e.g. around

the corner of concrete buildings.

More recent work has leveraged the idea of re�ecting RF

signals o� a plane to detect and localize objects around cor-

ners [39, 49, 54, 56]. However, simply localizing an object

https://doi.org/10.1145/3636534.3690671
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does not provide any perceptual information on what is

around the corner. For example, an autonomous vehicle

would need to plan di�erently for a motorcycle than for a

bicycle and a search and rescue robot must be able to di�eren-

tiate between a human and rubble. Although there has been

limited work on RF imaging around the corner [22, 44, 46],

these works make very strict assumptions about the envi-

ronment. First, they always assume there is a single, planar

surface to re�ect the signals o�, which is not always the

case in practical environments. Additionally, these systems

only operate in specially engineered environments where RF-

absorptive foam is placed in the area and/or metal is installed

on the re�ecting wall, limiting their practicality.

In this paper, our goal is to achieve high-resolutionmmWave

imaging around corners, without making strict assumptions

about the environment. In many cases, there is not a single,

ideal re�ecting plane. Instead, we often need to utilize any

available structure or surface to re�ect the signals o�, such

as pillars or poles, concave surfaces, or a combination of dif-

ferent re�ectors. These scenarios are challenging for several

reasons. First, we need to properly model the re�ections on

complex surfaces and incorporate them in our processing

algorithms to coherently combine the signals received at

di�erent antennas in the mmWave radar. For example, using

the standard radar processing algorithms in case of multiple

re�ecting planes would lead to several ghost re�ections and

bad imaging results. Second, we need to know the precise

geometry and location of the complex re�ecting surfaces to

accurately model the signal re�ections. This is because when

using mmWave frequencies for imaging, even cm-level er-

rors in modeling the radius of a pole, for example, can lead to

severe distortions in the reconstructed image (as we demon-

strate in Sec. §9). Finally, we show that convex surfaces such

as poles disperse the re�ected signals across a much wider

angle than the incident beam, resulting in a severe loss of an-

gular resolution, up to 22 times lower compared to a planar

re�ector in some scenarios.

We present RFlect, which takes the �rst step towards using

wireless signals to image around corners in practical environ-

ments. At a high level, 1) RFlect reconstructs NLOSmmWave

images by �rst classifying the dominant re�ectors that the

signals can re�ect o� and 2) then estimating their precise

geometries and locations using radar data. 3) Then, it uses

the re�ector model to predict how the signals will re�ect

and coherently combines the received signals to produce

high-resolution images. To enable RFlect, we address the

above-mentioned challenges as follows.

• Mathematical Modeling of NLOS mmWave Imaging:

We derive the mathematical models for mmWave imaging

through re�ections at complex surfaces such as concave,

convex, and multiple planes. We propose algorithms to re-

construct the image in each case by showing how to �nd

the exact re�ection point o� the surface from each antenna

to every voxel in space around the corner and computing

the propagation distance of the re�ection path in order to

coherently combine all received re�ections. We also derive

the exact theoretical resolution and coverage of mmWave

imaging when re�ecting o� concave and convex surfaces.

• Precise Re�ector Mapping: We introduce a new tech-

nique to precisely map the location and geometry of certain

re�ecting surfaces, allowing RFlect to avoid severe image

degradation due to incorrect re�ection path modeling. First,

RFlect uses the radar’s LOS image to get an initial coarse

geometry estimate of the re�ecting surface. Unfortunately,

for non-planar re�ectors, this is not su�cient to get a precise

estimate of the re�ectors geometry. To address this, RFlect

leverages the fact that mmWave radars capture �ner reso-

lution information in the phase of the signal which allows

us to compute the location and geometry of the re�ectors

with higher accuracy. However, instead of using a matched

�lter to construct an image of the surface fromwhich we esti-

mate the geometry, RFlect performs a matched �lter over the

geometric parameters of the surface e.g. center location and

radius in case the re�ecting surface is a pole. We describe

this method in detail in §7 and show that it signi�cantly

improves image quality.

•Overcoming the Resolution Loss: As pointed out earlier,

convex surfaces result in a massive reduction in resolution.

We can compensate for this loss by using a much larger an-

tenna array. However, that would make the array too costly.

We observe that the re�ected signals from the target only

occupy a very small portion of the angular spectrum (e.g.,

in the direction of the pole). Leveraging this insight, we can

use the same number of antennas to build a longer array by

increasing the antenna spacing, without su�ering from alias-

ing. This is unlike the case of line-of-sight imaging, which

su�ers from severe aliasing over the image.

We implemented a prototype of RFlect with a Synthetic

Aperture Radar (SAR) based mmWave imaging radar. We ex-

tensively evaluate RFlect in various environments and re�ect-

ing surfaces (e.g., convex, concave, composite surfaces, etc)

to demonstrate its ability to accurately reconstruct the shape

of objects in NLOS. In addition to presenting high-resolution

radar images, we demonstrate our 3D reconstruction to have

an average Chamfer distance of 0.02m and F-Score of 88.6%

when compared to a 3D point cloud reconstructed from

the Polycam app used on an iPhone 12 Pro. Since 3D re-

construction is di�cult to visualize in 2D, we provide an

anonymous video link to see the 3D radar point clouds here:

https://youtu.be/MqpnturbTIk.

Contributions: The paper has the following contributions:

https://youtu.be/MqpnturbTIk


• RFlect is the �rst mmWave imaging system capable of

producing high-resolution images around the corner in

practical environments.

• We introduce a method to precisely map the LOS re�ectors

and coherently combine signals re�ected from complex

surfaces to produce high-resolution NLOS images.

• We derive the theoretical impact on resolution and cover-

age for di�erent geometries of re�ecting objects.

• We build a prototype of RFlect, and demonstrate its perfor-

mance in many real-world environments, with di�erent

types of corners and re�ecting surfaces.

Limitations: This paper only takes the �rst steps towards

mmWave NLOS imaging in practical environments.We focus

on the design of reconstruction algorithms and demonstrate,

for the �rst time, signi�cant results without instrumenting

the environment or assuming planar re�ectors. However, we

acknowledge several limitations of our work that need to

be addressed before we can have a fully practical system.

For example, RFlect is currently limited to three classes of

geometries - convex, concave, and planar - and combinations

of multiple such re�ectors. Also, our modeling currently

assumes specular re�ection; future work could investigate

how incorporating di�use scattering, polarization, material

properties, etc. can further improve our model. We discuss

these limitations, and more, in detail in Sec. §10.

2 RELATED WORK

A. Optical Around-the-Corner: Past work for optical

NLOS imaging falls in two main categories: active and pas-

sive illumination methods. Active illumination methods use

lasers to illuminate the hidden scene [5, 10, 11, 15, 16, 24,

30, 32, 41, 42, 50]. However, these techniques require expen-

sive equipment, such as streak (time-of-�ight) cameras along

with high-power lasers that can be harmful to humans [42].

More recent work eliminated the need for time-of-�ight cam-

eras [5, 16], but makes strict assumptions about objects or the

scene such as having highly re�ective targets in sparse dark

backgrounds. Passive illumination techniques, on the other

hand, utilize only ambient lighting [3, 13, 14, 27, 28, 34, 53].

However, many of them can only coarsely detect the pres-

ence of moving objects [3] or track objects [27, 28] rather

than reconstruct the shapes and images of targets. Those

which can reconstruct images of NLOS scenes [13, 14, 34, 53]

su�er from low resolution and distortions and have strict

setup requirements. For example, [34, 53] require additional

occluders in the scene, while [13, 14] rely on speckle correla-

tions to reconstruct the image, so they are applicable only to

small objects, as large objects do not cause self-interference.

It is worth noting that all aforementioned methods would

fail in low visibility (e.g. darkness, smoke, fog, etc.).

RFlect is also related to work which models optical re-

�ections o� planar and non-planar surfaces for the purpose

of measuring object specularity [25, 26]. We build o� these

models and adapt them to derive models for around-the-

corner mmWave imaging, include unique phenomenon such

as re�ector-dependent angular resolution and coverage.

B. RF Around-the-Corner: Prior works have explored

NLOS sensing using RF signals that bounce o� walls or

di�ract at the edge of corners , including mmWave [9, 35,

36, 39, 45, 48, 49, 51, 54], UWB [18, 19, 37, 43, 56], and tera-

hertz [6, 33] systems. However, theseworks can only coarsely

localize (or image at a very low resolution) the NLOS objects

and cannot reconstruct high-resolution images. Mosaic [49]

is the only one to consider non-planar re�ection surfaces,

such as poles, to improve coverage and localization accuracy.

We build on top [49] to enable 3D imaging which requires

more complex reconstruction algorithms than localization

and we derive the theoretical resolution and coverage for

convex and concave re�ectors.

In the context of NLOS imaging, the closest to our work

are [20, 22, 44, 46], which propose re�ectingmmWave signals

o� a singular plane to image NLOS objects. However, these

methods have primarily been demonstrated in extremely

controlled environments, augmented by RF-absorbing foams

and singular planar re�ectors made of re�ective materials

such as metal. RFlect, on the other hand, is able to operate in

more practical environments without requiring changes to

the environment. It is also worth noting that [46] established

a geometric model for around-corner mmWave imaging, but

it only considers the simplest scenario with a single planar

re�ector. Our paper presents for the �rst time a more gener-

alized mathematical model for complex re�ecting surfaces,

including concave, convex, and composite surfaces.

C. Other Modalities: Thermal [23] and acoustic [21] imag-

ing have also been studied to reconstruct hidden objects, but

have only been demonstrated in well-controlled laboratory

settings, with strict requirements on objects.

3 PRIMER ON MMWAVE IMAGING

We start with an overview of RF imaging in LOS (i.e., not

re�ected) environments. A mmWave radar transmits chirp

signals that re�ect o� objects and are received by the radar

and used to measure range. A 2D array of receiver antennas

can be used to di�erentiate re�ections along the azimuth and

elevation dimensions. Therefore, the received signals can be

converted into a 3D radar heatmap, which represents the

re�ected signal strength of every voxel in 3D space, using

various reconstruction algorithms. The most straightforward

reconstruction algorithm is to apply matched �lters of the

re�ected signals at baseband. The re�ected power % (E) from
voxel E = (G,~, I) is:



% (E) =
�����

�����

�∑

8=1

#∑
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(1)

where � and # are the # of antennas and samples, B (=, 8) is
the =Cℎ baseband sample of the 8Cℎ antenna, 5 and : are the

chirp starting frequency and slope , 2 is the speed of light,

3 (E, 8) is the round-trip distance from the 8Cℎ antenna to E .

Resolution: The quality of mmWave radar images depends

on the range and angular resolutions. While the multi-GHz

wide bandwidth of mmWave radars provides cm-level range

resolution, (comparable to those of depth cameras and Li-

DARs), the angular resolution is signi�cantly lower. Angular

resolution is inversely proportional to the antenna aperture

size and is approximated in azimuth & elevation dimensions:

X\ ≈ _

�G cos(\ )
Xq ≈ _

�I cos(q)
(2)

where X\ (Xq ) is the azimuth (elevation) resolution, �G (�I )
is the aperture length in the x (z) dimension, and \ (q) is the

angle between the voxel and the center of the x (z) aperture.

_ is the wavelength of the center frequency.

RF Re�ections: When an RF signal re�ects o� a surface, it

will primarily follow one of two types of re�ection: scattering

(di�use) or specular re�ection. For specular re�ection, the

angle of incidence is the same as the angle of re�ection, while

di�use re�ections scatter at unpredictable angles. The type

of re�ection depends on how smooth the re�ecting surface

is relative to the signal’s wavelength. Since the mm-level

wavelength of mmWave radars is relatively long compared

to the surface variations of most materials (e.g., concrete,

wood, metal, etc.), the majority of re�ections are dominated

by specular re�ections. Since di�use scattering is di�cult to

predict and has a smaller contribution to the signal power,

we focus on leveraging specular re�ections to image around

the corner and do not consider di�usion in this paper.

4 SYSTEM OVERVIEW

RFlect is a NLOS mmWave imaging system capable of pro-

ducing high-resolution images of objects that lie in both RF

and visual NLOS. The system can produce images by re�ect-

ing signals o� LOS re�ectors of various geometries, including

planar, convex, concave, and composite surfaces. It uses the

LOS radar image of the re�ecting surfaces to classify their

shape and �nd a rough estimate of their bounds. Then, it

re�nes its estimates to �nd the exact location and geometry

of each re�ector in the environment. With this, it predicts

how signals re�ect o� the LOS surfaces and uses this to co-

herently combine the re�ected signals and image objects in

NLOS. We describe RFlect’s operation in 3 sections:

• Around-the-Corner Imaging (§5). First, we develop the

mathematical models for imaging in NLOS with re�ections

Radar

Planar 

reflector

(a)

Convex 

Reflector

(b)

Radar

Figure 2: Re�ections around the corner of a plane vs. a pole

from complex surfaces. We describe imaging with planar,

convex, concave, and composite surfaces.

• Theoretical Resolution and Coverage (§6). Next, since

di�erent surfaces will spread or concentrate the signals in

space, they change the resolution of the resulting imaging

system, as well as the coverage area it can successfully

image. We derive the theoretical resolution and coverage

area for planar, convex, and concave surfaces.

• Precise Re�ector Mapping (§7). Finally, RFlect needs

to precisely map the LOS re�ectors for the imaging models

in §5 to be accurate. To achieve high-precision mapping,

we leverage the radar data to derive the size and location

of every re�ector in the environment.

5 AROUND-THE-CORNER IMAGING
In this section, we will describe how RFlect produces high-

resolution images around the corner. For simplicity, in this

section, we will assume that the shape and location of all

LOS re�ectors are known, and we describe how to map these

re�ectors in §7.

5.1 Planar Surface Imaging
For clarity, we will start by considering a single planar re-

�ector surface. Intuitively, one can think of the re�ecting

plane like a mirror. The behavior of a planar surface can be

seen in Fig. 2(a). Recall from §3 that we can assume that the

signals experience primarily specular re�ections. This can

be seen by the red line, which shows a signal from the radar

re�ecting specularly towards the object of interest. If we

perform ray-tracing without accounting for the re�ection,

then the angle of arrival and distance will result in the red

dashed line ending behind the re�ecting wall. This results in

a mirrored image of the object located behind the re�ecting

wall. Leveraging this observation, we can produce an image

of the object following two steps: (1) Compute the matched-

�lter radar image using Eq. 1. The mirrored image will then

appear behind the re�ecting plane. (2) Re�ect the mirrored

image over the known plane to produce the �nal image.

5.2 Convex & Concave Surface Imaging

One might wonder whether we can simply use the same

approach for planar surfaces to image over convex and con-

cave surfaces. Unfortunately, this approach will not produce

accurate images. For example, Fig. 3(c) shows the result of

a real-world experiment measured on a convex surface (a

concrete pole) when applying the previous approach, which
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Figure 3: Convex Imaging. Applying standard matched �lters results in

distorted images while RFlect’s method does not.

is signi�cantly distorted. Similar distortions result when ap-

plying this method to concave re�ectors. This approach fails

because the convex and concave surfaces no longer act like

a simple planar mirror, but instead spread or concentrate

the signal over space as it re�ects. For example, Fig. 2(b)

shows an example of two signals being re�ected o� a convex

surface, which each travel in di�erent directions depending

on which part of the convex surface they re�ect o�.

We introduce a new method for coherently combining

signals re�ected o� convex/concave surfaces, with 2 steps:

(1) For each voxel-antenna pair, we �nd the point on the

surface ?A that produces a specular re�ection between

these two points. This is found using the approach in [8].

(2) Next, we perform a matched �lter by correlating with

the round-trip distance of the specular path (i.e., from

antenna to surface to voxel and back along the same

path). Formally, this new image %2 (E) can be computed:

%2 (E) =
�����

�����

�∑

8=1

#∑

==1

B (=, 8)4 92c3 (E,?A ,8 ) (5 +:=)/2
�����
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(3)

where 3 (E, ?A , 8) is the round-trip distance from the ith an-

tenna to ?A to voxel E and back along the same path. It can

be computed as 3 (E, ?A , 8) = 2( | |E − ?A | | + | |?A − ?8 | |).
Fig. 3(d) shows the same experiment as above, this time

applying our new method for the convex surface. As can

be seen, this method is able to successfully reconstruct an

image using signals re�ected o� a convex re�ector.

5.3 Multiple Re�ecting Surfaces
Finally, in many practical scenarios, there is not one single

LOS re�ector, but a composition of multiple re�ecting sur-

faces. For example, a cabinet against a wall, an open door and

the wall inside of the room, a monitor in front of an o�ce

wall, or a pole next to a door could result in multiple sets of

re�ections. Using re�ections from multiple surfaces allows

us to reconstruct a more complete image than with a single

re�ector, as di�erent surfaces have di�erent viewpoints.

If we naively account for only one of the re�ecting sur-

faces, then the re�ections from the other surfaces will be

incorrectly combined, leading to poor quality and ghost im-

ages. We show an example through a real-world experiment

with two piecewise planes. The evaluation environment is

a) Evaluation setup b) Plane 1 Reflection d) RFlect’s Output

e) Lego Titanicc) Plane 2 Reflection

Figure 4: Composite surface imaging. RFlect’s output when imaging o�

of composite surfaces.

shown in Fig. 4(a) and the object, which is a Lego model of

the Titanic is shown in Fig. 4(e). If we only account for the

plane of the wall, the image will appear as in Fig. 4(b). On

the other hand, if we only account for the plane of the door,

the image will appear as in Fig. 4(c).

This case is further complicated when re�ections bounce

o� both surfaces in the same path (di�erent surfaces for

outgoing & incoming signal). In other words we expect four

combinations where the signal travels from the transmitter

→ Surface 1 or Surface 2 → voxel in space → Surface 1 or

Surface 2→ receiver antenna. This results in seeing three

ghost re�ections when accounting for one plane. One ghost

appears each from paths that re�ect o� the same surface, and

one from the combination of surfaces as shown in Fig. 11.

Instead, RFlect computes the re�ections from each an-

tenna to each voxel in space for each of the re�ecting surfaces

and their combinations by �nding the re�ection points ?A
as described in the previous section. RFlect, then, combines

them coherently using amatched �lter (Eq. 3). Fig. 4(d) shows

the result from the split Lego Titanic and Fig. 11 shows the

result for a more complex case. As is evident from the result,

our technique is able to successfully reconstruct images com-

ing from multiple re�ectors. Furthermore, we reconstruct

the entire Lego Titanic, while the re�ections from a single

re�ector was only able to image part of the object, showing

how composite surfaces can improve the overall imaging.

6 THEORY: RESOLUTION & COVERAGE
6.1 Resolution
The theoretical resolution of RFlect is dependent not only

on the aperture length, but also on the geometry of the

re�ecting surface. For ease of exposition, we explain how to

�nd the theoretical resolution through Fig. 5. An antenna

array can separate any two points spaced further than its

LOS resolution (de�ned in Eq. 2), as shown by the blue lines

in Fig. 5. So, how does this separability translate to the non-

line-of-sight region? To answer this question, we need to

�nd the angle between two points in our NLOS region that

will produce re�ections arriving along the blue lines. We

do so by re�ecting our LOS resolution over our re�ecting

surface, shown by the red lines. Then, any points along these

lines will be separable, and, therefore, our NLOS resolution

is the angle between these two vectors.
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Figure 5: NLOS Imaging Resolution. The NLOS resolution can be found

by re�ecting the LOS angular resolution over the re�ecting surface.

6.1.1 Planar Surfaces. For simplicity, we will derive the

horizontal resolution from a planar surface and note that the

derivation can easily be extended to the vertical resolution

as well. For this reason, we will use 2D coordinates for the

remainder of this derivation. Without loss of generality, we

assume the radar is located at (0, 0). To �nd the angular

resolution, we start by �nding the angle of arrival of the

re�ected signal from a voxel E = (G,~).

GA = G + |=GG + =~~ + � |=G −
=~ (G − ?AG ) + =G (~ − ?A~ )

1 + |=G EG+=~E~+� |
|=G?AG +=~?A~ +� |

=~

~A = ~ + |=GG + =~~ + � |=~ +
=~ (G − ?AG ) + =G (~ − ?A~ )

1 + |=G EG+=~E~+� |
|=G?AG +=~?A~ +� |

=G

\ = arctan

(
~A

GA

)

(4)

where (GA , ~A ) is the point on the plane producing a specular

re�ection from the radar to voxel E , \ is the AoA of the signal

from the specular re�ection point, and the plane is de�ned

as =GG + =~~ + � = 0 with unit normal n = (=G , =~).
Next, we �nd the resolution, X\ , at this AoA using Eq. 2.

We know that the aperture’s separability at this angle is
de�ned by two rays (A1 & A2) centered at \ and spaced by X\ .

r1 =

[
cos(\ − X\

2
)

sin(\ − X\
2
)

]

r2 =

[
cos(\ + X\

2
)

sin(\ + X\
2
)

]

(5)

We re�ect these rays over the plane as described above:

r ′
1
= r1 − 2(r1 · n)n r ′

2
= r2 − 2(r2 · n)n (6)

where r ′
1
and r ′

2
are the re�ections of r1 and r2 over the

plane, respectively. Now, the angular resolution, X\,% , is the
angle between these two re�ected rays:

X\,% = arccos

(
r ′
1
· r ′

2

|r ′
1
| |r ′

2
|

)
(7)

If we substitute Eqs. 5 and 6 into Eq. 7, we get:

X\,% = arccos

(
(r1 − 2(r1 · n)n) · (r2 − 2(r2 · n)n)

|r ′
1
| |r ′

2
|

)
= arccos (r1 · r2)

X\,% = arccos

(
cos(\ + X\

2
) cos(\ − X\

2
) + sin(\ + X\

2
) sin(\ − X\

2
)
)

X\,% = arccos (cos(X\ )) = X\ (8)

Interestingly, the resolution is equivalent to the LOS res-

olution (X\ ). Intuitively, this makes sense as the plane acts

like a mirror; it neither spreads nor concentrates the signals.

6.1.2 Convex and Concave Surfaces. Next, we derive the

resolution when re�ecting over convex or concave surfaces.

Since we assume that our convex and concave surfaces are

perpendicular to the ground, the horizontal resolution is

dependent on the curvature and location of the re�ector.

In the vertical dimension, however, the surface acts like a

simple plane, meaning that the vertical resolution does not

change for these surfaces. Therefore, for the remainder of

this section, we will only derive the horizontal resolution.

Again, we start by �nding the AoA for a voxel E = (G,~).

\2 = arctan

(
~A,2

GA,2

)
(9)

where (GA,2 , ~A,2 ) is the specular re�ection point between

E and the radar. We refer readers to [8] for details on �nding

this point. \2 is the AoA of a signal re�ected from voxel E

over the convex surface. Similar to before, we de�ne two

rays centered around the AoA to match the resolution:

r1,c =

[
cos(\2 − X\

2
)

sin(\2 − X\
2
)

]

r2,c =

[
cos(\2 + X\

2
)

sin(\2 + X\
2
)

]

(10)

Next, we �nd where these rays intersect with the circle.1

11 = −2c · r1,c 12 = −2c · r2,c
31 = 12

1
− 4( | |c | |2 − A2) 32 = 12

2
− 4( | |c | |2 − A2)

pi,1 =
−11 ±

√
31

2
r1,c pi,2 =

−12 ±
√
32

2
r2,c

(11)

where c and A are the center and radius of the circle, and

p i,1 and p i,2 are the points of intersection of r1,c and r2,c
with the circle, respectively. The sign in the equation for p i,1

depends on the re�ecting surface. If it is convex, it is −. If
it is concave, it is +. Then, the normal to the surface of the

circle at each of these points can be computed as:

n1 =
pi,1 − c

| |pi,1 − c | | n2 =
pi,2 − c

| |pi,2 − c | | (12)

where n1 and n2 are the normals to the surface at p i,1 and

p i,2, respectively. With this, we can then compute the direc-

tion of the re�ected rays:

r ′
1,c = r1,c − 2(r1,c · n1)n1
r ′
2,c = r2,c − 2(r2,c · n2)n2

(13)

Finally, the theoretical resolution, X\,� , can be computed as

the angle between the two re�ected rays:

X\,� = arccos

(
r ′
1,c

· r ′
2,c

|r ′
1,c

| |r ′
2,c

|

)

(14)

1We can check if the rays do not intersect if 31 < 0 or 32 < 0.



6.2 Coverage Area

Next, we derive the theoretical coverage for various re�ectors.

The coverage of our NLOS imaging system is dependent on

the size and shape of the re�ecting surface.

The coverage area can be found by sweeping the angle

of arrival across various angles and re�ecting the signals

over the LOS surface. Then, the coverage area is any point

in space covered by these re�ections. In the case of our sur-

faces (planar, concave, convex), this area is bounded in each

dimension by only two rays. In particular, we can obtain

the bounds of the coverage area by re�ecting a ray over the

left-most and right-most bounds of the surface.

6.2.1 Planar Surface. First, we show the coverage of a pla-

nar surface. For simplicity, we show the derivation in the

horizontal dimension, and note that it can easily be extended

to the vertical . We assume the aperture is located at (0,0).
The edge of the coverage area is de�ned by the re�ection

over the left and right edge of the plane, computed as:

rR = bR − 2(bR · =)= rX = bX − 2(bX · =)= (15)

where rR and rX are the rays bounding the coverage area
from the left and right , respectively, bR and bX are the 2D
coordinates of the left and right edge of the plane. Then, the
angular coverage, Θ% , is the angle between these two rays:

Θ% = arccos

(
rR · rX

| |rR | | | |rX | |

)
(16)

6.2.2 Convex Coverage. Next, we derive the coverage angle

for a convex surface. Again, we note that for this surface,

the vertical coverage does not change compared to the pla-

nar surface, so we only derive the horizontal coverage. For

simplicity, we are assuming that the convex re�ector is a

complete circle, which is often the case(e.g., poles & pillars).
We �nd the edge of the coverage area by �nding the two

tangents that intersect the center of the aperture. The slope
of the two tangents can be computed as:

(G − G2 )2 + (<G − ~2 )2 = A2

<1,2 =

−(~22 + 4G2~2 ) ±
√
(~22 + 4G2~2 )2 − 4(G22 + ~22 − A2) (~22 − A2)

2(~22 − A2)
Next, we �nd the angle between the two tangents as:

\C = arctan

����
<1 −<2

1 +<1<2

���� (17)

When a ray is re�ected o� the circle, it will lie outside of
these two tangents. Therefore, the �nal angular coverage is:

Θ2 = 2c − \C (18)

6.2.3 Concave Coverage. Finally, we derive the coverage for

a concave re�ector. Similar to before, we note that the vertical

coverage does not change relative to a planar surface, so we

derive the horizontal converge. Unlike convex re�ectors, we

a) Planar Surface b) Concave Surface c) Convex Surface

Figure 6: RFlect’s Mapping of Di�erent Re�ectors. a) Planar surfaces

are mapped with the line-of-best �t. b/c) Complex surfaces (e.g., concave /

convex) are mapped with our matched-�lter algorithm for higher accuracy.

do not assume that concave re�ectors are complete circles.

For example, curved monitors are only a portion of a circle.
We start by �nding the edge of the coverage area as the

re�ection o� the left and right edge of the concave re�ector:

rR,c = bR,c−2(bR,c ·nX )nR rX,c = bX,c−2(bX,c ·nX )nX (19)

Then, the coverage angle, Θ+ , is the angle between them:

Θ+ = arccos

(
rR,c · rX,c

| |rR,c | | | |rX,c | |

)
(20)

7 PRECISE REFLECTOR MAPPING

So far, we have described how to image objects using the

re�ections o� complex surfaces. However, until nowwe have

assumed that the exact shape and location of the surfaces

were known. Next, we will describe howwemap the location

and geometry of re�ecting surfaces to enable NLOS imaging.

The overall process is summarized in Alg. 1.

Whenmapping re�ecting surfaces, it is important to achieve

high-accuracy mapping. In fact, we show in §9.4.2 that, for

convex surfaces, even a few centimeters of errors can result

in signi�cant distortions. To accurately map re�ectors, we

will use the mmWave radar itself.

We start by computing the bird’s eye view (BEV) radar

image using a matched �lter. We can then identify the LOS

surfaces by selecting all pixels above a power threshold g .

For each surface in LOS, we crop the radar image around the

LOS surface. If the LOS surface contains a small number of

points, this can be classi�ed as a convex surface, since the

majority of the surface is re�ecting the signal away from

the radar. Otherwise, we �nd the line or arc that best �ts

the points, as shown in Fig. 6a/b. If the residual error for the

line is less than that of the arc, we classify the surface as

planar; Otherwise, we classify it as concave. We note that

this approach assumes that all surfaces are perpendicular to

the ground, which is typically true for most walls and poles.

However, it can be easily extended to 3D instead of 2D.

While simply using the line of best �t might be su�cient

for planar surfaces, it does not work for more complex sur-

faces (e.g., convex and concave). Since these re�ectors de-

grade the resolution, they require higher mapping accuracy.

Furthermore, due to the specularity of the re�ector, the dom-

inant re�ection each antenna receives will be its specular



Algorithm 1 RFlect

1) LOS Re�ector Classi�cation

%!$( =

����∑�
8=1

∑#
==1 B (=, 8 )4 92c3 (E,8 ) (5 +:=)/2 ����

⊲ Compute LOS SAR

image

B!$( = {B ∈ %!$( |B > g } ⊲ Find LOS surface points (power > g )

if |B!$( | < U then

2;0BB = "Convex" ⊲ Convex if low number of points

else if line_fit_residual(B!$( ) < arc_fit_residual(B!$( ) then
2;0BB = "Planar" ⊲ Planar if line of best �t has lower residual

else

2;0BB = "Concave" ⊲ Otherwise, concave

end if

2) LOS Re�ector Mapping

if 2;0BB == "Planar" then

(Ĝ? , ~̂? , =̂? ) = line_fit(B!$( ) ⊲ Use line of best �t

else

(Ĝ2 , ~̂2 , Â ) = max(G2 ,~2 ,A ) ∈� ( (G2 , ~2 , A ) ⊲ Use Eqn. 22

end if

3) NLOS Imaging

if 2;0BB == "Planar" then

% (E) =
����∑�

8=1

∑#
==1 B (=, 8 )4 92c3 (E,8 ) (5 +:=)/2 ����

⊲ Use Eqn. 1

else

%2 (E) =
����∑�

8=1

∑#
==1 B (=, 8 )4 92c3 (E,?A ,8 ) (5 +:=)/2

����
⊲ Use Eqn. 3

end if

re�ection o� the surface. Since this point is di�erent for

every antenna, the re�ections will not coherently combine

when processed with a normal matched �lter, as shown in

Fig. 6c.

So, how can we accurately locate these surfaces? At a

high level, instead of assuming each antenna is able to re-

ceive re�ections from every point in space, we instead design

a matched �lter that accounts for surface specularity. Our

algorithm follows three steps:

(1) First, we model the re�ector with a small number of

parameters. For example, poles are de�ned by their center

point (i.e., a 2D coordinate) and radius.
(2) For a given model, we then �nd the point on the surface

that produces a specular re�ection from each antenna
back towards itself[8]. Then, we correlate each antenna’s
received signal with its specular re�ection path to pro-
duce a score for this model. Formally:

( (G2 , ~2 , A ) =
�����

�����

�∑

8=1

#∑

==1

B (=, 8)4 92c3 (?0,8 ,?A ) (5 +:=)/2
�����

�����
(21)

where ?0,8 is the ith antenna location, and ( (G2 , ~2 , A ) is
the score for a pole centered at (G2 , ~2 ) with radius A .

(3) We repeat this process, searching over a range of param-
eters to �nd the model that best �ts the received signals.
We bound this search based on the initial object bounds
from the LOS radar image. Formally, we select the center
and radius that maximizes the score:

(Ĝ2 , ~̂2 , Â ) = max
(G2 ,~2 ,A ) ∈�

( (G2 , ~2 , A ) (22)

where (Ĝ2 , ~̂2 ), Â are the �nal estimated center and radius,

and � is the set of possible centers and radii.

Finally, once the LOS re�ectors are mapped, we can apply

Eqns. 1 and 3 to produce images of the NLOS region.

8 OVERCOMING RESOLUTION LOSS
So far, we have described how we map LOS re�ectors and

image NLOS objects. Recall from §6 that the theoretical reso-

lution for a convex re�ector is drastically reduced compared

to that of a planar re�ector. In this section, we will discuss

how we overcome this resolution loss.

To improve our resolution, we can increase the length

of our aperture, which improves our LOS resolution. From

Eq. 14, we see that improving our LOS resolution will in turn

improve our convex re�ected resolution. However, simply

increasing the length of our aperture while maintaining the

same antenna spacing requires a signi�cantly higher number

of antennas, making this approach prohibitively costly for a

full array implementation. Typically, increasing the antenna

spacing, i.e., subsampling the antenna space, results in severe

aliasing for LOS imaging 2.

However, NLOS imaging o� a convex re�ector does not

have the same limitation. Since all signals coming from the

NLOS region must re�ect o� the convex re�ector, they will

all arrive at the radar within a small portion of the angular

spectrum. In fact, this is what causes the loss of resolution in

the �rst place. This allows us to use a much larger antenna

spacing before su�ering from severe aliasing. In fact, we

can increase the aperture from 30cm to 90cm, while using

the same total number of antennas, to gain back 87% of our

resolution loss without any additional cost.

One additional point is worth noting. While the antenna

spacing can be increased for convex re�ectors, the same is not

true for planar re�ectors. Therefore, to successfully operate

with di�erent re�ector shapes, RFlect could rely on one non-

uniform array which is densely-spaced in the middle (for

planar re�ectors), and sparsely-spaced on the outside (for

convex re�ectors).

9 EVALUATION

9.1 Implementation & Setup
A. System Implementation: We implemented an end-to-

end prototype of RFlect using a TI AWR1843BOOSTmmWave

radar [40] on a 2D linear stage to produce a synthetic aper-

ture. For planar and convex re�ecting surfaces, we use a

synthetic aperture of 30 × 30 cm, while for concave surfaces

we extend the aperture to 90 × 30 cm to compensate for the

loss of resolution. Our radar uses a bandwidth of 4GHz, and

512 samples per chirp. We implemented our NLOS imaging

models in CUDA to process the 3D radar heatmaps.

B. Evaluation Setup:Weevaluated RFlect in various practical

2While many works have aimed to overcome this limitation, such as through

randomly spacing arrays [55], there is still a limit to the number of antennas

that can be used in LOS imaging before aliasing overwhelms the image.



Plane 2 (metal) Plane 3 (glass) Pole 1 (concrete) Pole 2 (concrete) Pole 3 (concrete) Composite
(wood + concrete)

Concave (plastic)Plane 1 (concrete)

Figure 7: Re�ecting Surfaces. RFlect is evaluated on multiple planar, convex, concave and composite surfaces.

Figure 8: Ground Truth. a) RGB image. b) 3D ground truth scan from

iPhone. c) ICP-aligned ground truth (pink) and radar (green) point clouds.

NLOS scenarios, both indoors and outdoors. Figure 7 shows

our experiment setup with 3 di�erent planes, 3 di�erent

poles, as well as concave surface and composite of multi-

ple planes, which include a variety of re�ector materials

(concrete, wood, glass, metal, plastic). We tested 8 objects of

di�erent shapes, sizes, and materials, shown in Fig. 9.

C. Ground Truth: The ground truth for calculating quanti-

tative metrics is the 3D point cloud reconstruction, shown

in Fig. 8, from the Polycam app which uses the LiDAR on

iPhone 12 Pro. Each object was imaged with a full 360◦ scan.

D. Metrics: To evaluate the quality of our NLOS images,
we use two quantitative metrics: Chamfer distance and 3D
F-Score which are typical metrics for evaluating the quality
of 3D point-cloud reconstruction [38, 47]. To compute these
metrics, we start by taking all points in our 3D radar image
above a certain power threshold to create a 3D point cloud3.
We then use iterative closest point (ICP)[2] to align the radar
point cloud with the ground-truth point cloud as shown
in Fig. 8c. Then, we compute the bi-directional Chamfer
distance (CD) as the average distance from each point in the
radar point cloud to its nearest neighbor in the ground truth
point cloud (and vice versa)[47]:

�� (%', %� ) =
1

2#'

#'∑

8=1

3 (G8 , %� ) +
1

2#�

#�∑

9=1

3 (G 9 , %') (23)

where�� (%', %� ) is the chamfer distance between the radar

point cloud %' and the ground truth point cloud %� (with

#' and #� points, respectively). 3 (G, %) is the minimum

distance between point x and its nearest neighbor in point

cloud P, de�ned as 3 (G, %) =<8=G ′∈% | |G − G ′ | |.
Second, we evaluate the F-Score(FS) based on the precision

and recall[38, 52]. Here, precision (recall) is the percent of

points within the radar point cloud (ground truth point cloud)

3Since the results depend on the selected power threshold, we evaluate

the metrics across a range of thresholds and choose the best performing

threshold for each image. This ensures a fair comparison between RFlect

and other baseline evaluations.

whose nearest neighbor in the ground truth point cloud

(radar point cloud) are within a threshold g (0.05m). Formally:

%' =
1

#'

#'∑

8=1

13 (G8 ,%� )<g , '� =
1

#�

#�∑

9=1

13 (G 9 ,%' )<g , �( =
2 %' '�

%' + '�

where %', '�, and �( are the precision, recall, and F-Score,

respectively, 1 is an indicator variable.

E. Baselines: We compare to two LOS baselines. We place

the object directly in front of the radar aperture and apply

a standard matched �lter algorithm. We repeat this at two

distances: LOS Near at 1.5 m and LOS Far at 4.5 m.

9.2 Qualitative Imaging Results

9.2.1 Imaging o� Planar Surfaces. First, we compare the

around-the-corner imaging quality of RFlect when using a

planar re�ector with two LOS baselines(§9.1). To evaluate

RFlect, we place the radar roughly 3.5 m from the re�ecting

wall, and place the target object on the opposite side of the

corner roughly 1.5 m from the re�ecting wall such that the

target object is in NLOS of the radar. The total distance (radar

to wall to object) is roughly equivalent to LOS Far . For both

RFlect and the baselines, we convert the 3D heatmap to 2D

by taking the maximum value along the axis of projection.

Fig. 9 shows the 2D heatmaps for LOS Near (2nd row), LOS

Far (3rd row), and RFlect (4th row), and the corresponding

RGB images of the target object (1st row). RFlect is able to

reconstruct the shape of objects in NLOS settings using pla-

nar re�ections. For example, the star heatmap clearly shows

all 5 arms and the Taj Mahal shows two individual poles and

the main tower. Moreover, the performance of RFlect when

using planar re�ection closely matches the performance of

LOS mmWave imaging at the same distance. For example,

the Taj Mahal’s heatmaps for LOS Far and RFlect both show

similar resolution. This is expected, since planar re�ections

do not cause a loss in resolution, as derived in §6.1.

Furthermore, to evaluate RFlect’s ability to image in di�er-

ent environments, we capture NLOS images o� two di�erent

planar re�ectors in entirely new environments. Fig. 10(a)

shows the results for three di�erent objects overlaid on RGB

images of the objects for our second and third plane (1st

and second row, respectively). In both cases, RFlect is able

to produce accurate heatmaps of the objects, demonstrating

RFlect’s ability to operate across di�erent environments.
9.2.2 Imaging o�Convex Surfaces. Next, we evaluate RFlect’s

performance when imaging o� convex surfaces. In this result,
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Figure 9: Around Corner Imaging of RFlect compared to baselines. We compare RFlect to baselines of LOS images close to the imaging aperture (1.5m),

far from the imaging aperture (4.5m) and images re�ected o� a wall (planar surface).
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Figure 10: Other re�ectors. RFlect’s performance on a) di�erent planes shown in Fig. 7, b) composition of planes, c) convex and d) concave re�ectors.
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Figure 11: Resolving ghosts. (Top)3 ghosts ap-

pear. (Bottom)RFlect separates one mannequin.

Figure 12: 3D Reconstruction: of star,

Taj Mahal, rocket & Hogwarts.

Location Error Radius Error
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Figure 13: Impact of Mapping Accuracy. Adding errors to

location (b, c, d) and radius (e, f, g).

we use poles in a building as the re�ecting surface. We place

the radar between 1.6m and 2m from the convex surface,

and place target objects around the corner at an angle of

roughly 90° to the radar (with respect to the surface) and

at a distance of 1.5m to 2m from the surface. The radii of

our poles are between 0.15m and 0.2m. With this setup, the

theoretical resolution derived in §6.1 is between 7° and 10°.

Fig. 10(c) shows the results overlaid on RGB images for 4

di�erent objects on the same pole, as well as results of the

star on 3 di�erent poles.

RFlect can produce heatmaps that represent the shape of

NLOS objects when re�ecting o� convex surfaces, showing

the value of RFlect’s techniques.Moreover, when imaging the

same object across three di�erent poles (shown by the 3 star



images on the right), RFlect is able to produce heatmaps of

similar quality. This demonstrates RFlect’s ability to operate

robustly across a variety of di�erent environments (di�erent

pole geometries, locations, surrounding environments, etc).

9.2.3 Imaging o� Concave Surfaces. Next, we evaluate the

performance when imaging o� concave surfaces. We place

the radar 3 m from a curved monitor with a 1.5m radius

(shown in Fig. 7), and placed the target object 3m from the

monitor such that the object is completely hidden from the

radar. The target object and radar form a roughly 90° angle

with respect to the re�ecting surface. With this setup, the

theoretical resolution is 2°, as derived in §6.1.

Fig. 10(d) shows the results for three di�erent target ob-

jects overlaid on RGB images. RFlect is able to produce

heatmaps matching the shape of the target object, showing

that RFlect’s techniques are able to accurately map re�ec-

tions o� concave surfaces for around-the-corner imaging.

9.2.4 Imaging o�Multiple Planes. Weevaluate RFlect’s ability

to image around-the-corner when relying on re�ections from

multiple di�erent surfaces. We place the radar in front of two

piecewise planes at a distance of roughly 2m, and place the

target object entirely in NLOS roughly 2m from the planes.

We plot the 2D thresholded heatmap overlaid on the RGB

image of the target object.

Fig. 10(b) shows the resulting image when using only one

plane (1st row), using only the second plane (2nd row), and

the full image when applying RFlect’s methods (3rd row) for

three objects. For the Titanic (1st column), imaging with only

one plane produces half of the object, while using the other

plane produces the other half, due to the limited coverage of

each plane. With our composite imaging techniques, RFlect

is able to produce an image of the full object by combining

re�ections o� both planes. Similar patterns exist for other

objects. This result demonstrates the importance of RFlect’s

techniques leveraging multiple piecewise re�ectors.

Fig. 11 demonstrates the result when an object is imaged

o� of two planes such that there is a signi�cant overlap in

the re�ected coverage between the two planes. As described

in Sec. §5.3, without using RFlect’s method we are left with

3 ghosts. To accurately reconstruct the mannequin, we cor-

relate the signal with each of the possible paths to construc-

tively add all copies at the correct location and eliminate the

ghosts. This results with a much stronger re�ection coming

from the mannequin and places it in the correct location.

9.2.5 3D Reconstruction. So far, we have only shown 2D

projections of the heatmap. In fact, RFlect can reconstruct in

3D, which provides much more contextual information. We

create a 3D pointcloud with all points in the radar image that

are above a certain power threshold.We then color each point

in the point cloud based on its z-coordinate. Fig. 12 shows

the reference RGB image(1strow), the point cloud overlaid

on the image(2nd row), and stand-alone point cloud(3rd row)

LOS Far Planar

CD FS CD FS

Titanic 0.02 0.90 0.03 0.87

Mann. 0.04 0.67 0.04 0.70

Globe 0.01 0.97 0.02 0.96

Taj Mahal 0.03 0.88 0.02 0.90

Rocket 0.01 1.00 0.01 0.99

Hogwarts 0.01 0.97 0.01 0.97

Star 0.01 0.99 0.01 0.99

Road Sign 0.01 0.99 0.04 0.69

Planar 2 Planar 3

Mann. 0.05 0.70 0.04 0.67

Globe 0.02 0.89 0.02 0.89

Star 0.01 0.99 0.01 0.99

Table 1: LOS Far & Planar. Cham-

fer distance & F-Scores.

CD FS

C
o
n
v
e
x

Mann. 0.06 0.62

Globe 0.02 0.93

Taj Mahal 0.03 0.85

Rocket 0.02 0.94

Star 0.01 0.99

Star (P. 2) 0.02 0.99

Star (P. 3) 0.01 0.94

C
o
n
ca
v
e Globe 0.02 0.95

Taj Mahal 0.04 0.76

Star 0.01 0.98

C
o
m
p
. Titanic 0.03 0.86

Taj Mahal 0.02 0.92

Star 0.01 1.0

Table 2: Complex Surfaces.

Chamfer distance & F-Scores.

for some example images produced with planar re�ections.

However, it is hard to visualize point clouds in 2D.We provide

an anonymized video for better visualization which includes

additional examples https://youtu.be/MqpnturbTIk.

9.3 Quantitative Results
9.3.1 Planar Results. Next, we evaluate the quality of our

image using quantitative metrics. We compute the Chamfer

distance and F-score (See §9.1) for the Plane 1 images(Fig. 9

4th row), Plane 2 & 3 images (Fig, 10(c)), and LOS Far baseline

images (Fig. 9 3rd row). Table 1 reports the Chamfer Distance

(2nd and 4th columns) and F-Scores (3rd and 5th columns)

for LOS Far and planar re�ections for all objects. We make

the following observations:

• For all objects, the Chamfer Distance is 4cm or less, and the

F-Score is 69% or higher (with most objects over 87%). This

shows that RFlect is able to properly recover the shape of

the object when relying on planar re�ections.

• Furthermore, for all objects except the road sign, the cham-

fer distance and F-Score are less than 1cm and 3% dif-

ferent than the results for the same objects in LOS Far,

respectively. This demonstrates that RFlect’s planar image

quality is equivalent to LOS images at the same distance.

• Interestingly, the road sign performs much worse in the

planar case than in LOS Far, with an F-Score of 69% (vs

90%). This can be seen visually by the decreased image

quality in Fig. 9. This may be due to the high specularity

of this object, making it di�cult to image when it is not

perpendicular to incoming signals.

9.3.2 Convex & Concave Results. We evaluate the quality of

our results when using convex and concave surfaces as re�ec-

tors. Table 2 shows quantitative results (CD & FS) for convex

and concave imaging. We make the following remarks:

• For convex re�ectors, RFlect achieves a chamfer distance

less than 3cm and an F-score greater than 85% for all ob-

jects except the Mannequin. This demonstrates that RFlect

is able to successfully leverage convex re�ectors to enable

high-resolution around-the-corner imaging.

https://youtu.be/MqpnturbTIk
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A: Titanic, B: Mannequin, C: Globe, D: Taj Mahal, E: Rocket, F: Hogwarts, G: Star, H: Road Sign

Figure 14: Comparison toOtherObjects. F-Scores for (a) planar re�ecting

surfaces and (b) convex re�ecting surfaces compared to ground-truth.

• The mannequin scores the lowest for convex re�ections,

with a CD of 6cm and an F-score of 62%, likely due to it

being our largest object. Furthermore, this is only 2 cm

and 8% worse than the mannequin for planar re�ections.

• For concave re�ectors, RFlect achieves a chamfer distance

less than 4cm and an F-score greater than 76% for all ob-

jects. This demonstrates RFlect’s ability to accurately use

concave re�ectors to image in NLOS.

Across all results (planar, concave, convex & composite re-

�ections), we report an average Chamfer distance of 2cm

and F-Score of 88.6% compared to the ground truth.

9.3.3 Comparison to Other Objects. Finally, we compare the

radar point clouds to other object’s ground truth point clouds

to determine if the radar point clouds are informative enough

to identify which object was imaged. We use the same radar

point clouds as in §9.2, and compute their F-Score compared

to other ground truth point clouds. Fig. 14(a-b) show the

confusion matrices when using planar re�ections and con-

vex re�ections, respectively. The rows denote di�erent test

objects (from the radar) and columns are di�erent ground-

truth point clouds. The F-Score is written in each grid square,

and the grid is colored such that each row is normalized (i.e.,

the largest value in each row has the darkest blue and the

smallest value has the lightest blue). We note that in each

row, the highest F-Score occurs when the test object matches

the ground-truth (i.e., along the diagonal). This shows that

each radar image matches closest with its correct object.

9.4 Microbenchmarks
9.4.1 Impact of Distance. We �rst evaluate the impact of dis-

tance. We image the mannequin in LOS, o� a planar surface,

and o� a convex surface and increase the distance between

the radar and the surface (or the object in LOS). Fig. 15 shows

the RGB photo and results in a) LOS, b) NLOS using planar

re�ector and c) NLOS using convex re�ector at di�erent dis-

tances. The distances listed in the �gure are the total distance

(from radar to re�ecting surface to object). As the distance

increases in each case, the image quality degrades slightly.

This pattern is most noticeable with the convex re�ector,

which is expected (See §9.4.3). However, RFlect is still able

to image at 7m with planar and 6m with convex re�ectors.

9.4.2 Impact of Mapping Accuracy. Next, we evaluate the

impact of errors in the convex re�ector mapping on the

�nal image. We use the example of the mannequin imaged

with re�ections o� a convex surface from §9.2.2. We add an

increasing amount of error (1 cm, 3 cm, 5 cm) to RFlect’s esti-

mated location (center y) and radius, independently. Fig. 13a

shows RFlect’s original output compared to the images when

adding small mapping errors in Fig. 13b-g. We note that even

with very small errors in the location or radius, the image of

the mannequin becomes signi�cantly distorted. This shows

the importance of RFlect’s surface mapping techniques for

producing accurate around-the-corner images.
9.4.3 Theoretical Resolution. Here, we simulate the theo-

retical angular resolution of RFlect, using our derivations

in §6.1, and the radii from our experimental setups (0.175m

for convex& 1.5m for concave). First, we simulate the angular

resolution vs distance from the radar to the re�ecting surface.

Fig. 16a plots the results for planar (red), convex (green), and

concave (blue). We note that the planar angular resolution

is constant vs distance (translating to a linear decrease in

cartesian resolution), as expected since planar surfaces do

not a�ect resolution. Convex and concave surfaces see a

linear growth in angular resolution with distance4.

Next, we simulate the resolution vs the angle between the

center of the radar aperture and the re�ecting surface. Here,

negative angles correspond to the left side of the aperture.

Fig. 16b plots the results for planar (red), convex (green),

and concave (blue) surfaces. We note that for convex and

concave surfaces, the resolution reduces from 16° to 6° as the

angle ranges from -30° to 40°. Therefore, RFlect has a higher

resolution when the pole is on the right side of aperture.

9.5 Long-Range NLOS 2D Mapping
Finally, in Fig. 17, we show how RFlect can produce around-

the-corner bird’s eye view (BEV) mapping on the horizontal

plane, across a muchwider area (e.g., multiple buildings). The

top row of Fig. 17 illustrates the radar heatmap when using a

LOS matched �lter algorithm, displaying re�ections behind

the building walls. The second row shows the ground truth

overhead view of themapwith thresholded radar points over-

laid. The blue points represent LOS re�ections and the red

points represent the NLOS re�ections. By carefully mapping

the re�ection geometry of each wall, we are able to recre-

ate an accurate 2D BEV map of the streets, which closely

matches the ground truth map. This result illustrates that, in

addition to 3D imaging of objects, RFlect can also be used for

long-distance around-the-corner mapping for applications

such as autonomous driving.

10 LIMITATIONS
Although RFlect introduces the �rst step towards around-

the-corner NLOS imaging in practical environments, it has

several limitations that requiremorework to achieve pervasive

4Note that concave surfaces can also improve resolution, but only when the

target is near the surface, closer than the focal point.
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Figure 15: Impact of Distance. The impact of distance when a) in LOS, b) re�ecting o� planar surfaces, c) re�ecting o� convex surfaces.
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Figure 16: Theoretical Resolution. Impact of a) distance and b) angle on

planar(red), convex(green), and concave(blue) resolution.

Figure 17: Long-range around-the-corner BEV mapping with sur-

rounding walls: Top: BEV radar heatmap. Bottom: Ground truth map with

radar points overlaid. Blue: LOS re�ections, red: NLOS re�ections.

NLOS imaging:

• For the purpose of this paper, we are assuming three cate-

gories of re�ectors (concave, convex, and planar) and the

combination of multiple such re�ectors, which are com-

mon in everyday life. While some of our techniques can

translate to other low-dimensional surfaces (e.g., spheres,

elliptical surfaces, etc), future work is needed to extend

RFlect to work with more complex irregular surfaces, for

example by constructing 3D representations of the LOS

environment to model all the re�ections. Despite this, we

believe RFlect takes important �rst steps towards a more

generalizable around-the-corner imaging system.

• More generally, RFlect requires the presence of a re�ecting

surface.While this is the case inmany real-world scenarios,

RFlect (even with more advanced modeling) would not be

able to operate when there are no re�ecting surfaces.

• Our techniques assume specular re�ections o� the LOS

scene, with which we achieved accurate imaging across a

variety of evaluation environments, as shown in §9. How-

ever, while most re�ections at mmWave frequencies are

specular [31], some very rough surfaces may result in

some amount of di�use scattering, which may decrease

the NLOS image quality. It would be interesting for future

work to explore the impact of such surfaces and incorpo-

rate di�use scattering into the re�ection model. Further-

more, other phenomenon such as polarization, material

behaviour, etc. could be further explored to increase the

model accuracy.

• Our prototype implementation leverages a synthetic aper-

ture to emulate a 2D array. However, in the future, this

can be replaced with a �xed antenna array to eliminate

the scanning time, enabling mobile applications such as

autonomous vehicles. Alternatively, one could leverage

robotic motion (e.g.drones, wheeled robots) to create the

synthetic aperture for applications like search and rescue.

• While we empirically demonstrate RFlect’s ability to op-

erate across a variety of di�erent scenarios (e.g., re�ector

material, target material, etc), future work could further ex-

pand the theoretical understanding of around-the-corner

imaging by analyzing their impact on signal strength. For

example, some re�ection properties may be identi�able

from a LOS radar image to predict the signal strength of

the resulting image.

11 CONCLUSION
This paper presented RFlect, the �rst NLOS imaging system

capable of producing high-resolution images in practical

environments by leveraging re�ections o� LOS surfaces. It

introduced new techniques for imaging o� various surfaces,

including convex, concave, and composite surfaces, as well

as precisely mapping LOS re�ectors to enable accurate im-

age reconstruction. Further, we derived the theoretical res-

olution & coverage. Our evaluation showed RFlect’s ability

to successfully reconstruct di�erent objects across various

re�ectors, both indoor & outdoor.
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APPENDIX A: CIRCLE REFLECTION POINT
The problem of �nding the point on a circle which produces a specular

re�ection between two given points is known as Alhazen’s problem[8].

Here, we brie�y describe one known algebraic solution and refer readers to

[8] for more details. First, the two given points are modeled as numbers in

the complex plane. This solution assumes a unit circle (e.g., centered at 0

with radius 1), so we scale the numbers accordingly:

I1 =
(G1 − G2 ) + (~1 − ~2 ) 9

A
I2 =

(G2 − G2 ) + (~2 − ~2 ) 9
A

(24)

where (G2 , ~2 ) and r are the center and radius of the circle, (G1, ~1 ) and
(G2, ~2 ) are the given points and I1 and I2 are their complex numbers,

respectively.

Then, the specular re�ection point will be one of the four roots of the

following polynomial:

�D4 − �D3 + �D − � = 0 (25)

where � = I1I2, � = −(I1 + I2 ) , � = I1 + I2, and � = −I1I2 and where ·
is the conjugate operator. To �nd the polynomial roots, we can solve the

general case of a 4th degree polynomial [4]. We apply a change of variable:

G = D − �

4�
, U = − 3�2

8�2
+ �

�

V =
�3

8�3
, W = − 3�4

256�4
− ��

4�2
+ �

�

(26)

Then, the new equation is:

G4 + UG2 + VG + W = 0 (27)
Next, compute the following intermediate variables:

% =
U2

12
− W, & = − U3

108
+ UW

3
− V2

8

F =

√
U + 2~, * = −

3

√

−&
2
+

√
&2

4
+ %3

27

I =
V

2F
, ~ = − 5U

6
+

{
− 3
√
& % = 0

* − %
3* % ≠ 0

(28)

Now, the roots of the equation are:

D1,2,3,4 =
−�
4�

+ 1

2


BF + A

√

−(U + 2~) − 2

(
U + B V

F

)
(29)

where B, A ∈ {−1, 1} are variables to choose the signs, and all 4 combi-

nations create the 4 di�erent roots. Then, we can choose the correct root

corresponding to our specular root. For the case of a convex surface, it will

be the root that minimizes the round trip distance of the specular path:

: = 0A6<8=8∈{1,2,3,4} ( |I1 − D8 | + |I2 − D8 |), DA = D: (30)

Finally, we convert this complex root to our re�ection point:

?A = ('4 (DA ), �<(DA )) (31)

https://www.ti.com/product/AWR1843
https://www.ti.com/product/AWR1843
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